Вероятно, одно из отличий изобретателя или открывателя нового от большинства других людей состоит в том, что он совершенно новым образом поворачивает вещи, вообще-то известные и другим. Только эти «другие» не обращают на них внимания или не видят в них проку. Так вот, Константин Дмитриевич Хрущов увидел, что железным метеоритом природа не только подтвердила, что при любой попытке искусственного получения алмаза необходимо высокой давление. Природа словно сама подсказывала принципиальный проект алмазоделательного устройства!
Поняв это, Хрущов решительно отставил свою стальную бомбу с платиновой вставкой и стал выяснять, какпе еще металлы, кроме железа, обладают свойством расширяться при затвердевании. Оказалось, что серебро, висмут и галлий.
Хрущов предпочел серебро.
Висмут легко плавится, но если расплавленный висмут насытить углеродом, а затем быстро охладить, то… То карбид висмута разложит необходимую для охлаждения воду — и произойдет взрыв. О галлии, редчайшем металле, естественно, и речи быть не могло, хоть он и плавится от тепла ладони. Что же до железа, то можно лишь высказать предположение: Хрущов предпочел ему серебро просто потому, что температура его плавления ниже.
Не исключено также, что он слышал о попытках англичанина Марсдена получить алмазы в расплаве серебра, предпринятых еще в 1881 г. Так или иначе, он взял серебро, объяснений этому обстоятельству не оставив.
4 марта 1893 г. на заседании Санкт-Петербургского минералогического общества профессор Хрущов, действительный член этого общества, сообщил: «мы проделали такой опыт…».
Вот строки из его доклада.
«…На основании находок в метеорите можно было прийти к мысли, что под сильным давлением углерод может выделяться из раствора в металле в виде алмаза. Мы проделали такой опыт. Насытив кипящее серебро углеродом, которого растворилось шесть процентов, я быстро охладил массу. Давление в ее середине не могло не повыситься под действием корки, сразу же затвердевшей снаружи. Последовавшее за тем растворение получившегося слитка показало, что часть выделившегося углерода имеет свойства алмаза.
Порошок его состоит из проарашжь бесцветных кристаллических осколков и пластинок, сильно преломляющих свет, совершенно изотропных, царапающих корунд и сгорающих в углекислоту с незначительным остатком золы».
Хрущов показал участникам заседания свои кристаллы и тут же сжег их в кислороде. И еще Хрущов пояснил, что присутствующему в зале профессору Николаю Николаевичу Бекетову он уже показывал эти самые кристаллы и что это было на другой день после того, как получили в Петербурге журнал со статьей французского химика Муассана, да компетентное мнение которого о возможности образования алмаза в расплаве железа (а не серебра) под сильным давлением он, Хрущов, ссылался…
Обратимся и мы к алмазам из расплавленного железа, как бы проводя тем самым линию между историей и современностью, когда алмаз был и в самом деле синтезирован в железном расплаве. Но это случилось не так уж давно, в 1953 г., а первое известие об алмазе, сотворенном в расплаве железа, появилось на 60 лет раньше.
Автор упомянутого Хрущовым известия об удавшемся, наконец, изготовлении алмаза французский химик Фердинанд Фредерик Анри Муассан никогда не учился на химическом факультете и вообще, что называется, университетов не кончал. В детстве Анри Муассан получил кое-какие сведения по естественным наукам от отца (тоже не физика и не химика, а железнодорожного служащего), а затем усиленно пополнял их самостоятельно, читая книжки. Писал стихи и даже пьесы в стихах. (То же, кстати, делал и Хемфри Дэви.) Пятнадцати лет был тоже устроен учеником в аптеку. Там с Муассаном произошла история, ставшая впоследствии «обязательным украшением» его биографии. В аптеку ворвался некий господин, проглотивший изрядную дозу мышьяка с намерением уйти из жизни. Но теперь он передумал!
Хозяин аптеки растерялся от воплей незадачливого самоубийцы, а юный ученик мгновенно вспомнил нужную реакцию, схватил банку с магнезией и заставил перепуганного кандидата в покойники проглотить чуть не горсть белого порошка. Ядовитая трехокись мышьяка перешла в нерастворимое состояние, а пострадавший легко отделался…
Следующее место работы Муассана — химическая лаборатория Музея естественной истории, руководитель — профессор Эдмон Фреми, который синтезировал рубин — второй по твердости, после алмаза, драгоценный камень. То ли случайность, то ли преемственность интересов.
В 1886 г. Муассан сделал первое свое важное открытие: выделил электролизом новый элемент — фтор, жадно соединяющийся с огромным большинством химических веществ.
Спустя три года Муассан стал профессором Высшей фармацевтической школы, а потом профессором Парижского университета. Он был, как и его учитель Фреми, членом-корреспондентом Петербургской академии.
Большая часть исследований и открытий Муассана сделана с помощью изобретенной им самим электрической дуговой печи. Дугу, открытую русским Петровым и названную именем итальянца Вольта, заставил работать француз Муассан — одно из многих подтверждений очевиднейшей (впрочем, иногда отрицаемой) истины: интернациональности, всеобщности науки.
В дуговой печи Муассан выплавил из соединений многие тугоплавкие металлы — и в их числе молибден, вольфрам, титан, ванадий, хром, ниобий. В такой же печи он получил уран и торий. В числе карбидов, впервые изготовленных Муассаном, был карборунд — соединение углерода с кремнием, самый распространенный в нынешней промышленности абразив, одно из твердейших после алмаза веществ. Любопытно, что карборунд, или, как его назвали, муассанит, сначала был синтезирован, а потом уже найден в естественном состоянии (между прочим, в алмазоносных породах). Вряд ли можно считать случайным близкое соседство этих двух твердейших веществ в недрах Земли.
Не случайность, конечно, и то, что Муассан предпринял попытку изготовить алмаз. У Муассана было самое совершенное по тем временам нагревательное устройство — дуговая печь. Что же касается давления, то Муассан придумал то же, что и Хрущов. Скорее всего, на эту мысль его натолкнули осколки железного метеорита из Аризоны: основатель фирмы по разработке Каньона Дьявола инженер Барринджер якобы послал Муассану в Париж письмо о найденных там алмазных крупинках.
…Профессор Муассан весьма ценил изящество эксперимента, профессор Муассан был пунктуален и всегда безупречно одет, профессор Муассан требовал, чтобы каждую субботу полы в его лаборатории обязательно натирались воском.
Вместе с тем профессор Муассан был глубоко убежден, что настоящий эксперимент в науке — только тот эксперимент, который делается в соответствии с законами природы независимо от того, познаны они уже или пока еще только угаданы. А раз так, то результаты эксперимента должны быть такими же неизменными, как законы природы. «Опыт должен получаться всегда», — любил повторять Муассан.
Из трех возможных металлов — железо, серебро, висмут — Муассан выбрал первый. Он имел все возможности поставить эксперимент возможно ближе к природе: в его печи железо не только плавилось, но и кипело.
Уверенность Муассана в том, что он повторяет в лаборатории естественный процесс, базировалась на распространенной в то время гипотезе о происхождении метеоритов. Считалось, что метеориты — это обломки, выброшенные в мировое пространство из вулканов различных планет. Поскольку температура планетных недр весьма высока, вулканические бомбы могли быть раскалены, а попав в близкий к абсолютному нулю холод космического пространства, немедленно застывали. И давление внутри сильно повышалось. Примерно так же можно было представить себе и результат столкновения двух холодных метеоритов в космосе. От удара они сначала раскалялись, а затем, разбившись на мелкие куски, охлаждались.
Железо привлекало Муассана еще и тем, что оно обладает способностью в расплавленном состоянии поглощать большие количества углерода. При охлаждении железа, в котором растворен углерод, он кристаллизуется в виде графита. Это при нормальном давлении, а при высоком? При очень высоком? Не появятся ли вместо мягких плоских кристалликов графита твердые октаэдры алмаза?