Глава 9
Подобно режиссеру фильма
Для бизнесмена или правительственного чиновника в промышленно развитых странах Запада слово «ДНК» становится столь же привычным, как «нефть» или «сталь».
М. Д. Франк-Каменецкий
Возраст жизни на Земле — сотни миллионов лет. К нам, в сегодняшние дни, жизнь пробивалась сквозь многие потрясения и катастрофы. Они стерли с лица планеты динозавров, мамонтов и других диковинных зверей. Но все-таки кое-какие следы древнейшей истории жизни сохранились. В куске каменного угля, извлеченного из недр, можно обнаружить отпечатки доисторического папоротника. В размолотом строителями валуне найти окаменевшие раковины моллюска. В выброшенных штормовыми волнами на песчаное побережье Балтики золотистых кусках янтаре, этой застывшей смоле реликтовых деревьев, порой удается разглядеть мумии насекомых.
Какой-нибудь запечатанный в янтаре комар являет собой удивительное зрелище! Подумать только: неисчислимое множество поколений отделяет его от современных сородичей, казалось бы, он обязан разительно отличаться от своих собратьев, родившихся в атомном веке. Так нет! Комар все тот же: природа пронесла облик насекомого из глубин тысячелетий в наше время почти неизменным. Различие, если оно и есть, кажется совершенно несущественным.
Как же природе удается из века в век репродуцировать, раз за разом повторять свои изделия? И не приближенно, не кое-как, спустя рукава, оставляя лишь главное, не заботясь о деталях, — а творить словно бы под копирку, добиваясь воспроизведения даже самых мельчайших особенностей и нюансов. Загадка? Величайшая! И слава науке, которая сумела эту тайну разгадать.
Эстафета поколений
Суть секрета — в устройстве молекулы ДНК. В том, что у нее не одна, а именно две спирали.
А в самом деле, к чему излишества? Ведь и на одной спирали-ленте можно было бы записать всю наследственную информацию. Записать-то можно, трудно сохранить!
Уникальность ДНК в том и состоит, что в природе это единственная молекула, способная размножаться делением, воспроизводя себя, давая живым клеткам шанс непрерывно удваивать их число. А научной истиной это положение стало во многом благодаря исследованиям Эрвина Чаргаффа.
Чаргафф, австриец по национальности, родился в 1905 году в Австро-Венгрии в городе Черновцы, теперь это территория Западной Украины, окончил Венский университет, биохимик, работал в Берлине, с приходом нацистов перебрался в Париж, затем оказался в США, многие годы отдал изучению нуклеиновых кислот.
Чаргафф рос и воспитывался в атмосфере классической науки, материальные основы генетики тогда еще не были известны. Возможно, поэтому, отдав делу изучения ДНК и РНК так много времени, имея в этой области огромные заслуги, он с недоверием и даже с неприязнью встречал последние новшества молекулярной генетики.
Впрочем, предоставим ему высказаться самому: «…я разделяю ученых на два основных типа: одни — это более редкий тип — стремятся понять окружающий мир, познать природу; другие, которых куда больше, непременно хотят объяснить мир. Первые ищут истину, иногда вполне четко сознавая безнадежность своих попыток; вторые стремятся к законченной стройной и целостной картине мира. Первым мир открывается в его лирической напряженности, вторым — в логической ясности, и это они, вторые, — его владыки…» И дальше, более резко: «А теперь придется ввести еще одну подгруппу, может быть, самую влиятельную в биологии, — это те, которые хотят перекроить природу. Этих я не буду касаться, потому что убежден, что именно попытка преобразовать или перехитрить природу почти привела к ее гибели…»
А вот более грустное признание Чаргаффа: «…человек не может быть без тайны. Можно сказать, что великие биологи прошлого творили в свете самой тьмы. Нам уже не досталось ничего от этой благотворной ночи. Луна, на которую я в детстве любил смотреть по ночам, — такой луны уже нет на небе. А что последует за этим? Боюсь, что меня поймут неправильно, если я скажу, что в каждом из наших великих научно-технических подвигов человечество необратимо теряет еще одну точку соприкосновения с жизнью».
Пессимизм, возможно, природный, не мешал, однако, Чаргаффу быть великолепным исследователем. Он вспоминает, как в 1944 году поразило его сообщение Эвери, доказывающее вроде бы, что таинственные гены спрятаны в нуклеиновых кислотах. «Я был просто потрясен. Мне вдруг показалось, что я вижу неясные контуры грамматики биологии…»
Чаргафф тогда резко повернул руль своих научных поисков и занялся химией ДНК. И удача сопутствовала ему. Ученый доказал, что генетические буквы располагаются в спиралях ДНК строго попарно. Против аденина (А), расположенного на одной из спиралей, всегда находился тимин (Т), размещенный на другой спирали. Так же, словно взявшись за руки, вели себя и две другие буквы: гуанин (Г) обязательно располагался против цитозина (Ц).
Согласно Чаргаффу выходило, что в молекуле ДНК буквы алфавита подчиняются следующему математическому закону:
Большое открытие! Оно сразу многое прояснило. Прежде всего, то, почему в генетическом алфавите четное число (четверка: А, Г, Т и Ц) букв. Понятно, нечетное число букв — три, пять и так далее — нельзя разбить на пары.
Стало ясным и то, каким образом удваивается молекула ДНК, плодя точные свои копии. Существование двух взаимосвязанных через дополнительные буквенные пары А — Т и Г — Ц спиралей, внешнее надстраивание на них дополняющих букв, позволяет природе легко размножать ДНК и клетки.
Процесс идет таким образом. Одна спираль, назовем ее нить А, воспроизводит дополнительную нить-спираль В, а нить В (вторая начальная спираль) — повторяет нить А. Вот так вместо одной возникают две молекулы ДНК, затем, если считать общее их число, — 4, 8, 16 и так далее — эстафета поколений! — в геометрической последовательности, до бесконечности. То есть до наших дней.
ДНК на ремонте
Репликация, удвоение ДНК идет с большой, прямо-таки пулеметной скоростью: до 500 букв за секунду у бактерий, до 50 букв у млекопитающих. Вот с какой сказочной быстротой совершается перепечатка громадного генетического архива. И это идет ежедневно, ежечасно, ежеминутно.
Тонкий процесс! Он поражает наблюдателя еще и своей точностью. Тем, повторимся, что какого-нибудь рачка, обитавшего в теплых морях палеозоя, очень трудно, не специалисту вообще невозможно, отличить от его нынешнего потомка.
Опечатки? Они, конечно, случаются. Без этого нельзя. Точно установлено учеными: при копировании ДНК человека, например, когда в каждой спирали содержится несколько миллиардов букв, число ошибок достигает десятков тысяч (!) на каждое клеточное деление.
И это не самые страшные для живой материи факты. Живая клетка, а вместе с ней и ДНК, часто оказываются под грозным воздействием ультрафиолетовых, рентгеновских и прочих вредных излучений. Спирали ДНК корежат, «выбивая» буквы, и различные попадающие в клетку химические агенты. Но даже если внешняя среда чиста, то и тут искажения в ДНК имеют место, на этот раз уже самопроизвольные, вследствие тепловые ударов. Подсчитано, что при 37 градусах Цельсия в среднем ДНК клетки теряют до 20 букв-оснований (в промежутках между двумя делениями).
Но как же тогда понимать, спросит удивленный читатель, примеры с комаром в янтаре, с прапрарачком, о которых упоминал автор? Что же гарантирует почти вечную повторяемость живого? Где истоки столь полезной для жизни консервативности ее форм?