Литмир - Электронная Библиотека
A
A

«Зеленый богатырь», «королева полей», «чемпион кормовых» — все эти пышные титулы относятся к кукурузе. И заслуженно! Пройдите в конце лета между рядками кукурузного поля, покажется, что вы попали в джунгли. Со всех сторон вас будут окружать высокие (до 5 метров) стебли с мощными листьями, которые достигают метровой длины и заполняют все свободное пространство между растениями. Кукуруза — лучшая фуражная культура, ее можно собирать по 100 центнеров с гектара. Ячмень, овес дают в три раза меньше.

За время, прошедшее со дня открытия Америки, кукуруза распространилась по всему белому свету. Во времена Колумба она покорила Европу, но долгое время этот злак оставался не более чем курьезом: европейцам просто не нравился его вкус; в XVI веке проникла в Африку, Китай, Индию, в XVII столетии добралась и до России. Правда, в нашей холодной стране долгое время дальше Тулы не поднималась.

Однако наибольшее распространение кукуруза получила среди фермеров США. Там она стала сельскохозяйственной культурой номер один. В кукурузном поясе Соединенных Штатов собирается половина всей производящейся в мире кукурузы, что приносит американской казне (экспорт в другие страны) 5 миллиардов долларов дохода.

Ныне по площади, как утверждают специалисты, кукуруза занимает третье место среди всех возделываемых культур земного шара, пропустив вперед только пшеницу и рис. Дело, говорят, попахивает уже и вторым. Валовой сбор кукурузы приближается к валовому сбору пшеницы, а по посевным площадям кукуруза близка к рису.

Растения C3 и C4

Отношение к кукурузе у нас в стране менялось много раз: ее то превозносили до небес, то предавали незаслуженному забвению. Это растение то входило в моду, и не было более восторженных эпитетов, чем те, которыми награждалась кукуруза (в наше время из кукурузы можно изготовить до 150 технических и продовольственных продуктов), то оно теряло всех своих поклонников. И причины тут, конечно, не в самой кукурузе. Недостаточное знание ее биологических особенностей, слабая техническая оснащенность кукурузоводческих хозяйств не позволяли использовать богатый потенциал этой культуры.

Но в последнее десятилетие ею вновь очень заинтересовались ученые: появилась вроде бы реальная возможность объяснить высокую продуктивность фотосинтеза у кукурузы.

Сочетание использования радиоактивных изотопов углерода с хроматографией и другими методами химического анализа дало возможность группе американских ученых из Калифорнийского университета — ее в послевоенные годы возглавил Мелвин Калвин — проследить «путь углерода в фотосинтезе»: установить, как в листьях растений углекислый газ в конечном итоге преобразуется в углеводы. Теперь все это уже стало историей науки. И известно как углеродный цикл, или цикл регенерации рибулозодифосфата, или же совсем просто: как цикл Калвина. Этот ученый в 1961 году стал первым, и пока последним, нобелевским лауреатом среди изучающих фотосинтез.

Характерная особенность цикла Калвина в том, что здесь углекислота, меченная радиоактивным углеродом, прежде всего присоединяется к молекулам, содержащим три атома углерода: фосфоглицериновой кислоте и фосфоглицериновому альдегиду. Продолжая эти исследования, в 1960 году молодой и тогда еще мало кому известный советский ученый Юрий Соломонович Карпилов сделал важное открытие. Изучая пути поглощения углекислого газа кукурузой, Карпилов показал, что у этого древнего растения процесс фотосинтеза идет своеобычно, вопреки правилам.

Кукуруза отказывалась подчиняться законам цикла Калвина. Радиоуглеродная метка «застревала» не в трех-, а в четырехуглеродных молекулах — щавелевоуксусной, яблочной и аспарагиновой кислотах. Так открытие казанского ученого разделило растения на два клана: C3-растения, так сказать, трехуглеродные (C, как известно, — химический символ углерода) и C4-растения четырехуглеродные.

Карпилов опубликовал свои результаты в ученых трудах Казанского сельскохозяйственного института. Научного издания, понятно, не из самых читаемых. Эти публикации не привлекли к себе тогда большого внимания, хотя в науке о фотосинтезе то был крупный шаг вперед. Однако вскоре ученые (1965–1967 годы) прибавили к семейству C4-растений и лебеду, и росичку, и сахарный тростник, и сорго, и другие злаковые растения, в основном тропического и субтропического происхождения, около 500 видов из 13 родов. И наконец австралийцы Маршалл Хетч и Конрад Слэк, подытожив подобные исследования, отчетливо показали, что кукуруза и подобные ей растения C4-группы владеют секретом высокоэффективного усвоения углерода. В отличие от C3-растений, «исповедующих» цикл Калвина.

Вот конкретные цифры. Кукуруза, сахарный тростник и другие представители C4-растений способны усвоить в час каждым квадратным дециметром своей листвы 80–100 миллиграммов углекислого газа. А C3-растения — шпинат, овес, сахарная свекла и другие — лишь 30–50 миллиграммов. Примерно в два раза меньше!

«Ошибка» Джозефа Пристли

В 1955 году канадский исследователь Джон Деккер обнаружил еще один, особенный процесс дыхания растений на свету, который получил позднее название фотодыхания. Так досье «фотосинтез» пополнилось новыми данными, которые поначалу только запутывали и сбивали с толку исследователей. В самом деле, каков смысл фотодыхания, если на свету растение в основном все же больше поглощает углекислоту, чем выделяет ее?

Эта почти детективная история имеет еще и привкус курьеза: Деккера опередили. Ведь, по существу, открыл фотодыхание почти за два столетия до исследований Деккера все тот же Джозеф Пристли! Он первым наблюдал этот феномен, долго ломал себе голову над ним, но осмыслить так и не смог.

Вспомним: первые опыты (1771 год, город Лидс в Англии), приведшие к открытию фотосинтеза, Пристли вел в лаборатории при умеренном свете. Но в 1778 году ученый стал экспериментировать уже в саду, на ярчайшем солнце. Здравый смысл подсказывает: чем ярче свет, тем, казалось бы, сильнее должно быть очищающее действие зелени. Истина вроде бы очевидная, однако растения «голосовали против»: они не улучшали, как на то надеялся Пристли, а ухудшали воздух! Было отчего прийти в отчаяние.

Теперь-то, с высоты науки наших дней, которой известен феномен фотодыхания, нам ясна подоплека неудач Пристли. Мы уже свыклись с тем неоспоримым фактом, что при сильном освещении скорость потребления кислорода и, как следствие, выделение углекислоты заметно возрастают. И поэтому у многих растений в фотодыхании вроде бы бесполезно тратится до 50 процентов того, что накапливается в фотосинтезе. И растения вынуждены на 50 процентов работать вхолостую!

Если учесть еще, что в солнечные дни концентрация углекислоты в нижних слоях атмосферы заметно падает, то станет совсем понятным, отчего у Пристли на свету опыты никак не ладились: фотодыхание съедало то, что приносил фотосинтез, растения практически не фотосинтезировали.

Вот она, истинная причина неудач Пристли: он, искусный и изощренный экспериментатор, наблюдал то, что наука его времени объяснить не могла! Да, бывают преждевременные открытия, способные замутить правильное понимание природы вещей, бросить тень на сложившиеся постепенно, добытые с таким трудом и, в общем-то, верные концепции.

Однако вернемся к фотодыханию. В чем все-таки его смысл — вот вопрос! Чтобы ответить на него, надо было попытаться отделить процесс фотосинтеза от обратного ему процесса фотодыхания. Сделать это непросто, ибо часть выделяющегося при фотодыхании углекислого газа, а дело происходит в глубине зеленого листа, в его порах, может тут же поглощаться в фотосинтетическом процессе и таким образом вообще не выходить из пор межклетника. Поглощение углекислого газа идет в темновых, свет здесь не нужен, реакциях цикла Калвина, на так называемых центрах карбоксилирования. Измерить концентрацию CO2 в этих центрах, а значит, и проконтролировать скорость темновых стадий фотосинтеза (здесь-то и появляется надежда отделить фотодыхание от фотосинтеза) никому прежде не удавалось.

14
{"b":"549052","o":1}