Литмир - Электронная Библиотека
Содержание  
A
A

Платина — элемент редкий и в природе находится в рассеянном состоянии. Самородная платина обычно представляет собой естественный сплав с другими благородными (палладий, иридий, родий, рутений, осмий) и неблагородными (железо, медь, никель, свинец, кремний) металлами. Такая платина (ее называют сырой или шлиховой) встречается в россыпях в виде тяжелых зерен размером от 0,1 до 5 мм. Содержание элементной платины в этом природном сплаве колеблется от 65 до 90%. Самые богатые уральские россыпи содержали по нескольку десятков граммов сырой платины па тонну породы. Такие россыпи очень редки, как, кстати, и крупные самородки. Сырую платину, подобно золоту, добывают из россыпей промыванием размельченной породы на драгах.

С приисков сырая платина поступает на аффинажный завод. Классический метод выделения платины заключается в длительном нагревании сырой платины в фарфоровых котлах с царской водкой. При этом почти вся платина и палладий, частично родий, иридий, рутений и основная масса неблагородных металлов (железо, медь, свинец и другие) переходят в раствор.

В нерастворимом остатке содержатся кварц, осмистый иридий, хромистый железняк. Этот осадок отфильтровывают, повторно обрабатывают царской водкой, а затем отправляют на извлечение ценных компонентов — осмия и иридия.

Платина в растворе находится в виде двух комплексов: H2[PtCl6] — большая часть — и (NO)2[PtCl6]. Добавляя в раствор HCl, разрушают комплекс (NO)2[PtCl6], чтобы вся платина превратилась в комплекс H2[PtCl6]. Теперь можно, как это делал еще Соболевский, вводить нашатырь и осаждать элемент № 78 в виде хлорплатината аммония. Но прежде надо сделать так, чтобы присутствующие в растворе иридий, палладий, родий не ушли в осадок вместе с платиной. Для этого их переводят в соединения, не осаждаемые хлористым аммонием (Ir8+, Pd2+), а затем раствор «доводят», прогревая его с кислотами (серной или щавелевой) или (по способу Черняева) с раствором сахара.

Операция доводки — процесс трудный и тонкий. При недостатке восстановителя (кислота, сахар) осаждаемый хлороплатинат будет загрязняться иридием, при избытке же сама платина восстановится до хорошо растворимых соединений Pt2+, и выход благородного металла понизится.

Раствор хлористого аммония вводят на холоду. При этом основная часть платины в виде мелких ярко-желтых кристаллов (NH4)2[PtC6] выпадает в осадок. Основная же масса спутников платины и неблагородных примесей остается в растворе. Осадок дополнительно очищают раствором нашатыря и сушат; фильтрат же отправляют в другой цех, чтобы выделить из него драгоценные примеси сырой платины — палладий, родий, иридий и рутений. Сухой осадок помещают в печь. После нескольких часов прокаливания при 800-1000ºC получают губчатую платину в виде спекшегося порошка серо-стального цвета.

Но это еще не та платина, которая нужна. Полученную губку измельчают и еще раз промывают соляной кислотой и водой. Затем ее плавят в кислородно-водородном пламени или в высокочастотной печи. Так получают платиновые слитки.

Когда платину добывают из сульфидных медно-никелевых руд, в которых содержание элемента № 78 не превышает нескольких граммов на тонну руды, источником платины и ее аналогов служат шламы цехов электролиза меди и никеля. Шламы обогащают обжигом, вторичным электролизом и другими способами. В полученных концентратах содержание платины и ее извечных спутников — платиноидов — достигает 60%, и их можно извлекать из концентратов тем же путем, что и из сырой платины.

Методы получения платины и платиноидов из сульфидных руд разработаны в нашей стране группой ученых и инженеров. Многих из них уже нет в живых. Они сделали большое и очень важное для страны дело и потому заслуживают упоминания в рассказе об элементе № 78.

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_077.jpg
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_078.jpg

Слева — профессор Лев Александрович Чугаев (1873—1922) — первый директор Платинового института. Справа — академик Илья Ильич Черняев (1893–1966). Под его руководством выполнены многочисленные исследования платины и других благородных металлов, а также их соединений 

Это — И.И. Черняев, В.В. Лебединский, О.Е. Звягинцев, Н.К. Пшеницын, А.М. Рубинштейн, Н.С. Селиверстов, П.И. Рожков, Ю.Д. Лапин, Ю.Н. Голованов, Н.Д. Кужель, Е.А. Блинова, Н.К. Арсланова, И.Я. Башилов, И.С. Берсенев, Ф.Т. Киренко, В.А. Немилов, А.И. Степанов.

Химия платины

Платину можно считать типичным элементом VIII группы. Этот тяжелый серебристо-белый металл с высокой температурой плавления (1773,5°С), большой тягучестью и хорошей электропроводностью недаром отнесли к разряду благородных. Он не корродирует в большинстве агрессивных сред, в химические реакции вступает нелегко и всем своим поведением оправдывает известное изречение И.И. Черняева: «Химия платины — это химия ее комплексных соединений».

Как и положено элементу VIII группы, платина может проявлять несколько валентностей: 0, 2+, 3+, 4+, 5+, 6+ и 8+. Но, когда речь идет об элементе № 78 и его аналогах, почти так же, как валентность, важна другая характеристика — координационное число. Оно означает, сколько атомов (пли групп атомов), лигандов, может расположиться вокруг центрального атома в молекуле комплексного соединения. Наиболее характерная степень окисления платины в ее комплексных соединениях 2+ и 4+; координационное число в этих случаях равно соответственно четырем пли шести.

Комплексы двухвалентной платины имеют плоскостное строение, а четырехвалентной — октаэдрическое.

На схемах комплексов с атомом платины посредине буквой А обозначены лиганды. Лигандами могут быть различные кислотные остатки (Cl-, Br-, I-, NO2-, NO3-, CN-, C2O4-, CNS-), нейтральные молекулы простого и сложного строения (H2O, NH3, C5H5N, NH2OH, (CH3)2S, C2H5SH) и многие другие неорганические и органические группы. Платина способна образовывать даже такие комплексы, в которых все шесть лигандов различны.

Химия комплексных соединений платины разнообразна и сложна. Не будем обременять читателя многозначительными частностями. Скажем только, что и в этой сложной области знаний советская наука неизменно шла и идет впереди.

Характерно в этом смысле высказывание известного американского химика Чатта (1960 г.): «Возможно, не случайно было и то, что единственная страна, которая посвятила значительную часть своих усилий в области химических исследований в 20-х и 30-х годах разработке координационной химии, была и первой страной, пославшей ракету на Луну».

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_079.png
Комплексы двухвалентной платины имеют плоскостное строение, а четырехвалентной — октаэдрическое 

Здесь же уместно напомнить о высказывании одного из основоположников советской платиновой промышленности и науки — Льва Александровича Чугаева: «Каждый точно установленный факт, касающийся химии платиновых металлов, рано пли поздно будет иметь свой практический эквивалент».

Потребность в платине

За последние 20–25 лет спрос на платину увеличился в несколько раз и продолжает расти. До второй мировой войны более 50% платины использовалось в ювелирном деле. Из сплавов платины с золотом, палладием, серебром, медью делали оправы для бриллиантов, жемчуга, топазов… Мягкий белый цвет оправы из платины усиливает игру камня, он кажется крупнее и изящнее, чем в оправе из золота или серебра. Однако ценнейшие технические свойства платины сделали ее применение в ювелирном деле нерациональным.

54
{"b":"545877","o":1}