Литмир - Электронная Библиотека
Содержание  
A
A

В вытеснительной системе горючее и окислитель подаются из баков в камеру сгорания давлением сжатого газа. Простейший пример — баллонная система. Шаровой резервуар сжатого газа через редуктор соединен с баками, где и поддерживается постоянное давление. Необходимость толстостенного баллона утяжеляет систему. Чтобы избежать этого, для вытеснения горючего и окислителя используют иногда горячие газы, получаемые при горении порохового заряда или работе дополнительного маломощного ЖРД.

Подводя итог, можно сказать, что вытеснительная система подачи топлива оправдывает себя лишь на малых и средних ракетах. Для более крупных ракет считается предпочтительней применять насосную систему, хотя она и получается технически сложнее.

Существенно для работы ЖРД и обеспечить надежное зажигание. Можно, например, воспламенять с помощью электричества пороховой заряд, а тот в свою очередь будет зажигать основное топливо. Надежные результаты дает и использование самовоспламеняющегося топлива.

Чтобы не подвергать двигатель опасности разрушения, его запускают ступеньками. Для этого сначала в камеру сгорания подают небольшие порции топлива. Постепенно подача доводится до величины полного расхода. Отсечка двигателя или его остановка достигаются подачей в течение нескольких секунд одного компонента вместо двух.

Особое значение в ряде стран придается созданию силовых установок для ракет, заправляемых компонентами топлива на заводе и могущих храниться в боевой готовности в течение 5–6 лет в любых метеорологических условиях. Для этой цели используются такие горючие, как амины и их смеси: гидразин, несимметричный диметилгидразин, монометилгидразин, этилендиамин, смесь ксилидина и триэтиламина, хидин, аэрозин. Окислителями, как правило, служат красная дымящая азотная кислота, содержащая четырехокись азота и противокоррозийную присадку, четырехокись азота, трехфтористый хлор, пятифтористый бром. Применяя, например, в качестве компонентов смеси аминов и красную дымящую азотную кислоту, можно получить высокую удельную тягу и обеспечить длительное время их хранения без заметной коррозии в алюминиевых баках.

Кроме баков в конструкции силовой установки для длительного хранения предусматривается пороховой аккумулятор давления. Он служит для подачи компонентов топлива в камеру сгорания. Этот аккумулятор мембранами предохраняется от попадания в него компонентов жидкого топлива.

После заправки на заводе баков топливом в пороховой аккумулятор давления помещается шашка твердого топлива. Так что перед запуском двигателя следует только установить воспламенитель. В процессе хранения силовой установки можно осматривать шашку, вынимая ее из двигателя. Совершенно ясно, что жидкостные двигатели, работающие на топливе длительного хранения и заправляемые на заводе, имеют большие преимущества перед двигателями, заправляемыми непосредственно перед стартом. Они резко увеличивают боеготовность ракет, упрощают процесс эксплуатации техники на боевых позициях.

Перейдем теперь к другому типу силовых установок для ракет, основанных на применении ракетного двигателя на твердом топливе. Для них характерно то, что вещества, участвующие в рабочем процессе, уже заранее помещены в камеру сгорания, их не надо туда накачивать, как это бывает у жидкостных двигателей. Отсюда и первое преимущество ракетного двигателя на твердом топливе — его высокая готовность к старту. Конструкция двигателей на твердом топливе проста, отсутствие необходимости в насосах сокращает количество движущихся частей. Все это обеспечивает их высокую надежность в работе. Но есть у них и «узкие места»: твердое топливо сгорает быстро, трудно регулировать процесс горения.

Что представляет собой твердое топливо? Это — механическая смесь или химическое соединение окислителя и горючего. По данным зарубежной печати, до последнего времени в ряде стран было широко распространено топливо, в котором основное вещество — нитроцеллюлоза или нитроклетчатка. Клетчатку в больших количествах содержат растения, такие, как лен, пенька, хлопчатник. В древесине ее около 50 процентов. Обрабатывая клетчатку азотной кислотой, получают нитроклетчатку или нитроцеллюлозу.

Чтобы получить твердое топливо, называемое баллиститным, нитроклетчатку растворяют в нитроглицерине и динитродиэтиленгликоле. Затем в топливо вводятся добавки, чтобы придать ему нужные свойства. К добавкам могут относиться воск, вазелиновое масло, камфора, смолы, а иногда окись магния, мел, окись свинца и другие вещества. Заряды из баллиститного топлива изготовляют штамповкой или литьем.

При этом за рубежом плотность их равна 1,6 г/см3, а температура вспышки 200 °C. По мнению иностранных специалистов, баллиститные топлива не имеют особых перспектив применения, если не считать ракет тактического назначения и снарядов «воздух — воздух». Объясняется это тем, что энергетические возможности баллиститных топлив невелики. К тому же трудно обеспечить их нормальное горение при низких давлениях в камере сгорания.

Ученые в ряде стран предложили использовать так называемые смесевые топлива. Они представляют собой тонкую механическую смесь горючего (битумы, смолы, синтетические каучуки и т. д.) и окислителя (нитрат калия, перхлорат аммония и т. д.). Добавляются также катализаторы горения (сажа, парафин, окись меди). Удельный вес топлива получается порядка 1,5–1,7 г/см3.

Процесс производства смесевых топлив значительно проще, чем баллиститных. Температура их вспышки также выше (250–300 °C). Горение происходит устойчиво. Много лет смесевое топливо может храниться, не изменяя своих свойств. В печати появились сообщения, что сейчас уже удается получать заряды такого топлива диаметром до 2 м и весом в несколько тонн.

В процессе работы двигателя продукты горения истекают через выходное сопло, причем скорость горения заряда топлива зависит от его конфигурации, начальной температуры, давления в камере.

Поначалу двигатели на твердом топливе применялись лишь на малых ракетах, теперь они получают права гражданства для дальних и даже межконтинентальных ракет.

Что касается сравнительной оценки топлив, то наиболее перспективными считаются такие жидкие горючие, как бороводороды, и в частности пентаборан и декаборан. Среди твердых топлив все большее значение приобретают полиуретаны. С их помощью удалось увеличить время работы двигателя. В США все большим вниманием пользуются и проекты ядерных двигателей, их считают весьма эффективными.

Как осуществляется управление ракетами? Мы уже отмечали, что ракеты не нуждаются в экипаже, ими управляют автоматы. Автоматическое управление ракетным оружием есть логическое развитие систем управления, применявшихся в артиллерии, авиации и других отраслях техники. Еще К. Э. Циолковский указывал, что для управления ракетами полностью применимы общие принципы теории автоматического регулирования.

На ракету, покинувшую стартовое устройство, кроме силы тяги, создаваемой двигателем, действуют аэродинамические силы. Точка приложения равнодействующей этих сил называется центром давления. Расположение центра давления относительно центра масс ракеты сказывается на ее устойчивости в полете. Когда центр давления находится впереди центра масс, ракета оказывается в состоянии неустойчивого равновесия. И тогда случайные возмущения — порывы ветра, нарушение геометрических форм ракеты или симметрии тяги — приводят к отклонению ракеты от траектории.

Как же увеличить устойчивость ракеты в полете, сдвинуть центр давления назад по отношению к центру масс? Решить эту задачу помогает применение стабилизатора в виде хвостового оперения. Однако оно действует эффективно лишь на неуправляемых и сравнительно небольших управляемых ракетах. Другой путь обеспечения устойчивости ракеты — придание ей вращательного движения вокруг продольной оси. Но здесь имеются те же ограничения — невозможность применить его для больших управляемых ракет. Самым радикальным способом сдвинуть назад центр давления оказалось применение специальных автоматов. Они выполняют как бы роль оперения и сохраняют устойчивость оси ракеты, несмотря на влияние различных возмущающих воздействий.

20
{"b":"539586","o":1}