Литмир - Электронная Библиотека
A
A

Совершенно очевидно, что общий характер адаптаций данного вида должен соответствовать определенным особенностям среды его обитания и образу жизни, т. е. конкретным формам использования ресурсов среды (экологические ограничительные факторы, по классификации В. Е. Райфа, 1975).

Однако "выбор" данным видом определенных среды обитания и образа жизни тоже не случаен и определяется, в свою очередь, сложившимися в ходе предшествовавшей эволюции особенностями строения, физиологии, поведения и другими наследственными характеристиками вида, а также широтой нормы реакции его генотипов. Все эти ограничительные факторы Райф обозначил как исторические. Исторические ограничительные факторы канализируют филогенез данной группы как косвенно (определяя выбор возможной среды обитания и образа жизни), так и непосредственно.

Всякий конкретный генотип (и, следовательно, генофонд популяции или вида в целом) характеризуется определенным спектром изменчивости, под которым понимается весь набор возможных мутаций (каждый тип которых появляется с определенной частотой). Некоторые мутации для данного генотипа оказываются "запрещенными", т. е. принципиально невозможными из-за отсутствия необходимых предпосылок в самом генетическом коде 2. На этом основаны генетические запреты в филогенезе. С другой стороны, "разрешенные" мутации регулярно возникают в генофонде данного вида, причем тенденция к появлению сходных (гомологичных) мутаций сохраняется и в генофондах близко родственных видов организмов (закон гомологических рядов наследственной изменчивости Н. И. Вавилова). Возникновение гомологичных мутаций у близких видов является генетической основой для параллельной эволюции близких филетических линий, неоднократно упоминавшейся выше при рассмотрении филогенеза различных групп организмов.

Возможности эволюционных преобразований ограничиваются и на уровне процессов морфогенеза (онтогенетические запреты). Мутации, которые сами по себе (т. е. на уровне клетки) возможны, во многих случаях ведут к таким нарушениям работы определенных морфогенетических систем или же координации деятельности разных систем, которые приводят организм к гибели на той или иной стадии индивидуального развития.

Наконец, даже при возможности появления соответствующих мутаций и изменений морфогенеза, некоторые перестройки фенотипа (даже обладающие сами по себе приспособительной ценностью) не могут быть реализованы в филогенезе из-за их несоответствия конкретной морфофизиологической основе организма. Соответственно, эта категория исторических эволюционных запретов и ограничений может быть названа морфофизиологической. Существует несколько форм морфофизиологических эволюционных запретов. Первая из них включает ограничения, которые обусловлены необходимостью гармонических перестроек систем организма, интегрированных функционально или топографически. Эта форма проявляется в филогенезе в виде топографических и динамических координаций 3 (т. е. филогенетических корреляций) между различными структурами. Соответственно, такие морфофизиологические ограничения можно назвать координационными. Координационные ограничения запрещают, например, усиление данной группы мышц без соответствующего усиления скелетных структур и некоторых других мышечных групп, поскольку это сделало бы согласованную работу скелетно-мышечной системы механически несовершенной.

Другая форма морфофизиологических ограничений является следствием развития определенных приспособлений и потому названа нами адаптивной. Нередко самые успешные приспособления, способствовавшие биологическому прогрессу данной группы организмов, оказываются источником для возникновения подобных эволюционных запретов. Так, одним из важнейших эволюционных достижений насекомых является усовершенствование трахейной системы, открывшее широкие возможности для освоения открытых местообитаний в условиях дефицита влаги в воздухе (М. С. Гиляров, 1971). Кроме того, развитие максимально разветвленной системы трахейных стволиков, пронизывающей все тело насекомого, позволяет значительно интенсифицировать газообмен вплоть до достижения временной гомойотермии во время полета у некоторых видов. Вместе с тем такая дыхательная система накладывает существенные ограничения на эволюционные возможности насекомых. Крайняя разветвленность трахей делает ненужным участие кровеносной системы в газообмене, последняя в значительной степени редуцируется. При такой организации дыхательной и транспортной систем снабжение массивных органов оказывается затрудненным, что ограничивает возможности увеличения тела насекомых (В. Н. Беклемишев, 1952). Таким образом, эволюционный запрет на увеличение размеров тела у насекомых явился следствием специфического распределительного аппарата этой группы. Вспомним, что насекомые в карбоне пытались конкурировать с позвоночными в экологических нишах крупных форм, но и тогда самые большие стрекозы не превышали в размахе крыльев 1 м, а самые крупные современные виды достигают в длину лишь 13-15 см.

Наконец, особая форма морфофизиологических ограничений возникает в результате инадаптивной эволюции (см. главу 5), такие эволюционные запреты можно соответственно назвать инадаптивными.

Иногда морфофизиологические эволюционные запреты связаны с особенностями строения и функционирования какой-либо одной ("запрещающей", или лимитирующей) системы органов, которая оказывается на данном этапе филогенеза своего рода "узким местом", ограничивающим возможности эволюционных преобразований многих других систем органов. В некоторых филетических линиях соответствующие морфофизиологические запреты могут быть раньше или позже сняты в результате постепенных преобразований "запрещающей" системы. Тогда многочисленные и разнообразные изменения, прежде блокированные состоянием этой системы (но бывшие и прежде возможными в генетическом и морфогенетическом аспектах), сразу становятся осуществимыми. Это создает основу для крупных эволюционных сдвигов. Последние благодаря высокой адаптивной ценности ставших возможными ("разрешенных") изменений, происходят в относительно краткие сроки, что может создать впечатление "скачкообразного" возникновения нового уровня организации.

Подобные случаи преодоления морфофизиологических запретов соответствуют ключевым ароморфозам (Н. И. Иорданский, 1977, 1979), под которыми понимаются такие изменения организации, которые не только сами по себе имеют важное значение для организма, но также существенно изменяют взаимодействие его систем, открывая новые возможности функционирования и эволюционных перестроек различных органов. Ключевой ароморфоз играет роль своеобразного эволюционного спускового механизма: снимая морфофизиологические запреты с целого ряда важных преобразований различных систем органов, он способствует значительному ускорению темпов макроэволюции.

В эволюции предков амниот ключевым ароморфозом было, вероятно, развитие эффективного механизма вентиляции легких посредством изменений объема грудной полости, связанного с формированием грудной клетки. Это важнейшее достижение позволило амниотам решить целый ряд морфофизиологических проблем, сняв многие эволюционные ограничения, характеризующие организацию земноводных (см. главу 3).

Помимо, разного рода эволюционных запретов и ограничений, канализация процессов филогенеза достигается также "от противного" благодаря наличию тех или иных преадаптаций, т. е. конкретных предпосылок в организации данной группы живых существ, возникших в ходе ее предшествовавшей эволюции и позволяющих определенному органу принять новую функцию или биологическому виду начать освоение новой среды обитания. Так, преадаптацией для появления вторичного челюстного сустава у предков млекопитающих был процесс разрастания задней части зубной кости нижней челюсти, связанный с усовершенствованием работы челюстных мышц при жевании (см. главу 4). У предков челюстноротых позвоночных расчленение жаберных дуг на подвижные элементы, управляемые мышцами, в процессе совершенствования механизма вентиляции жабр явилось преадаптацией для возникновения челюстей (см. главу 3). Для начала освоения суши как среды обитания был необходим комплекс преадаптаций (органы воздушного дыхания, приспособления для передвижения по субстрату и др.), сформировавшийся в водной среде в процессе развития адаптаций кистеперых рыб к их специфическому образу жизни (см. главу 3).

48
{"b":"47324","o":1}