Литмир - Электронная Библиотека

Когда была решена проблема n тел для n = 2, математики принялись за решение для n = 3. Речь шла о логическом продолжении рассуждения, позволявшем понять движение системы, образованной Солнцем, Землей и Луной. Ньютон первым, в 1702 году, осуществил прорыв публикацией своей лунной теории. В предисловии он объяснял: 

«Долгое время астрономы жаловались на неравномерность движения Луны; и это правда, я всегда сожалел о том, что такая близкая планета к нашей имеет орбиту, удаленную от эллипса». 

Однако исследования Ньютона потерпели провал, так как ученый был не в состоянии представить результаты с допустимой погрешностью. Позднее он будет с горечью вспоминать: у него никогда не болела голова, за исключением того времени, когда он проводил исследования Луны. В 1760-х годах Эйлер стал первым, кто в целом изучил проблему трех тел, двигающихся под воздействием взаимного притяжения: 

«Проблема сократилась до трех дифференциальных уравнений, которые не только не могут быть никоим образом введены, но для которых очень сложно подобрать приблизительные решения». 

Клеро, как и Эйлер, попытался решить задачу трех тел, но при этом жаловался на сложность и закончил тем, что использовал довольно приблизительные решения. Решение этих крайне сложных проблем казалось настолько трудным, что были запущены две параллельные программы исследований. С одной стороны, ученые искали точные решения, а с другой — стремились к общим приблизительным ответам, которые можно было бы использовать в течение некоторого времени, применяя метод теории возмущений, о котором мы говорили.

В 1772 году Лагранж участвовал в конкурсе Академии наук Парижа с работой, посвященной задаче трех тел. Он хорошо понимал, что этот вопрос не мог быть решен посредством интегрирования (в отличие от задачи двух тел), то есть с помощью аналитической функции, которая стала бы общим решением дифференциальных уравнений. Однако ученый предложил несколько других решений. Можно было найти точное решение, в случае если три исследуемых тела находились в определенной конфигурации и два из них имели очень большие массы по сравнению с третьим. Эйлер также предложил решение для случая, когда три тела располагались на одной линии, а Лагранж — когда три тела находились в углах равностороннего треугольника (с тех пор эти точки называют точками Лагранжа). В те годы все эти решения не имели реального смысла и были не чем иным, как математическим развлечением, и только в 1906 году астрономы докажут, что троянские астероиды (крупное скопление небесных тел на орбите Юпитера) образуют с Солнцем и Юпитером именно такое построение. Решения задачи трех тел, полученные чисто теоретическим способом, найдут свое физическое подтверждение более чем через столетие. Сам того не зная, Лагранж решил задачу трех тел для системы, образованной Солнцем, Юпитером и астероидом Ахиллес (см. рисунок на следующей странице).

Таким образом, Лагранж нашел общее приблизительное решение задачи трех тел. Особого интереса заслуживают два случая: система трех тел, образованная Солнцем, Юпитером и Сатурном, и система, состоящая из Солнца, Земли и Луны. Речь шла о том, чтобы объяснить нерегулярное движение нашего спутника, а также движение больших планет Солнечной системы. Если учитывать только силу тяготения Солнца (так как масса этой звезды наиболее значительна в системе), можно утверждать, что орбита каждой планеты представляет собой эллипс. Однако, если добавить силу тяготения других планет, эллиптическая траектория нарушается. Являются ли эти возмущения кумулятивными или они компенсируют друг друга с течением времени?

Требовалось узнать, являются неравенства эллиптического движения планет (используем терминологию Лагранжа и Лапласа) периодическими или вековыми. В первом случае отклонения орбит были бы компенсированы в течение длительного периода времени таким образом, что орбита осталась бы стабильной. Периодические неравенства вызывают искажение орбиты планеты сначала в одном направлении, затем в обратном, таким образом возмущения компенсируются.

Но если мы имеем дело с вековыми неравенствами, то возмущения накапливаются в течение неопределенного времени, пока, наконец, планета не покинет свою эллиптическую орбиту Эта ситуация завершается дестабилизацией Солнечной системы.

Неравенства векового типа вызывают искажения планетных орбит в одном направлении, что влечет нарушение равновесия.

Поскольку эти неравенства наблюдались в течение многих веков, они были названы вековыми. Лаплас был убежден, что основные возмущения планетных орбит (касающиеся их формы и положения, то есть эксцентриситета эллипса и места планеты на орбите) не вековые, а периодические, и они колеблются вокруг некоторых средних значений, не выходя за определенные пределы. Как мы вскоре увидим, Лаплас решит проблему аномалий, наблюдаемых в движении Сатурна, Юпитера и Луны.

Вселенная работает как часы. Лаплас. Небесная механика. - img_12.jpg

В окрестностях точки Лагранжа L4 находится Ахиллес, образующий с Солнцем и Юпитером равносторонний треугольник (его углы равны 60°). В окрестностях других точек Лагранжа (L1 и L2) находятся другие троянские астероиды, расположенные на прямой линии,что соответствует решению Эйлера.

Вначале давайте рассмотрим аномалии движения Юпитера и Сатурна. Галлей в XVII веке констатировал, что Сатурн двигается с явным замедлением и удаляясь от Солнца, а Юпитер — ускоряя свой бег и приближаясь к светилу. Если бы эта тенденция сохранилась, Юпитер в конце концов столкнулся бы с Солнцем, а Сатурн — покинул пределы Солнечной системы.

Подставляя (в уравнение) цифровые показатели для Юпитера и Сатурна, я был удивлен тем, что оно становилось равно нулю.

Лаплас об уравнении, доказывающем постоянство усредненных орбит планет

Между 1785 и 1786 годами Лаплас решил эту загадку, описав ее в своих гениальных трудах под названием «О вековых неравенствах планет и спутников» и «Теория Юпитера и Сатурна». Как и Лагранж, Лаплас понимал, что найти точные аналитические решения задачи трех тел невозможно, поэтому следует прибегнуть к приблизительным решениям. И он сумел предоставить аналитическое выражение для векового неравенства планет. Ему удалось вывести уравнение и обнаружить приятный сюрприз: вековые ускорения планет пропали. Ученый смог разобраться с одним из самых важных феноменов мировой системы и доказать, что неравенства, наблюдаемые в движении Юпитера и Сатурна, являются не вековыми, а периодическими.

Аномалии движения Юпитера и Сатурна объясняются ньютоновым законом всемирного тяготения, и, в принципе, можно рассчитать предшествующие и последующие состояния системы. Ускорение первой планеты и замедление второй — следствие их взаимного влияния. Эти возмущения периодические и поэтому — компенсируемые. Каждые 450 лет они меняют знак ускорения: Юпитер начинает замедлять движение, а Сатурн, наоборот, ускоряется. Таким образом, планеты возвращаются в исходное положение каждые 900 лет. По какой причине это происходит? Лаплас констатировал, что на каждые пять оборотов Юпитера по его орбите приходится около двух оборотов Сатурна и для того, чтобы обе планеты вновь оказались в исходном положении, требуется 900 лет[1 Период обращения Юпитера — 12 лет, период обращения Сатурна — почти 30. За 900 лет Юпитер сделает 75 оборотов, а Сатурн — 30.]. В результате накопленные возмущения компенсируются. Наконец-то нашелся человек, который сумел объяснить ускорение Юпитера и торможение Сатурна, так тревожившие астрономов со времен Ньютона! И эта тревога понятна, ведь ни один ученый не может наблюдать регулярность в течение такого долгого промежутка времени!

Каким же образом Лаплас получил столь блестящий результат? Чтобы решить проблему движения планет, он использовал приблизительные значения. Если бы существовала только одна планета, она описала бы вокруг Солнца обычную эллиптическую орбиту. Но поскольку планеты воздействуют друг на друга, в качестве обычной можно рассматривать возмущенную орбиту. Для этого мы добавим к расчетной орбите небольшое возмущение (см. рисунок).

9
{"b":"284680","o":1}