Литмир - Электронная Библиотека
Содержание  
A
A

Важно обратить внимание на то, что в клетках, длительное время ускоренно размножающихся, уменьшается число специализированных выростов и выпячиваний плазматической мембраны, содержащих различные рецепторные комплексы на гормоны белковой природы, антигены, гормональные регуляторы и др. Этот признак является морфологическим отражением утраты клеткой многих поверхностных глюко- и протеоконъюгатов, падения чувствительности делящейся клетки к внешним регуляторным влияниям. Происходит относительная «регуляторная глухота», снижение чувствительности ко многим гормонам белковой природы, действующим на уровне внешней стороны плазматической мембраны.

Средняя картина морфологической перестройки клетки в связи с длительной интенсификацией деления характеризуется сокращением количества и объема мембранных структур, выполняющих специализированные функции в интересах целого организма, и одновременно усилением структур, непосредственно связанных с функцией деления. Клетка морфологически упрощается и становится более похожей на независимо существующий одноклеточный организм (рис. 5).

Все изложенное приближает изначально дифференцированную зрелую клетку к ее эволюционно более древним предкам. Сокращение общей площади мембран клетки сочетается с биохимическими и биофизическими данными о нарушении интегральных функций мембран и связанных с ними структур и первичных регуляторных процессов.

Биофизика познает рак - i_006.png

Рис. 5. Цитологическая перестройка «идеальной» животной клетки при переходе от состояния «покоя» (специфической функции в дифференцированном состоянии) к пролиферации (снижению специфической функции и дисдифференцировке)

1 — ядро; 2 — ядрышко; 3 — хроматин; 4 — митохондрии; 5 — лизосомы; 6 — микротельца; 7 — секреторные пузырьки; 8 — агранулярный эндоплазматический ретикулум; 9 — гранулярный эндоплазматический ретикулум; 10 — гранулы гликогена; 11 — капли липидов; 12 — свободные рибосомы; 13 — связанные рибосомы; 14 — полисомы; 15 — гранулы неорганических веществ; 16 — центриоль; 17 — микроворсинки; 18 — межклеточные контакты; 19 — межклеточные пространства; 20 — базальная мембрана

Способность к пролиферации — древнейшее свойство клеточного уровня организации биологических систем. Специфические функции клетки, возникшие в ходе дифференцировки у многоклеточных организмов, относятся к более поздним эволюционным приобретениям. Эти функции связаны с разделением обязанностей и специализацией отдельных клеток в интересах целого организма.

Переход клетки и ткани от выполнения специализированной функции в системе целостного организма, т. е. от дифференцированного состояния, к снижению дифференцировки и усилению пролиферации означает переход на эволюционно более древние и более устойчивые пути метаболизма. Обнаружение в активно или длительно пролиферирующих тканях каких-либо эмбриональных свойств (ферментов, антител и т. п.) следует рассматривать как проявление эволюционно-древних признаков.

Ошибки синтеза белка при усилении пролиферативной активности ткани

В процессе канцерогенеза могут появляться не характерные для данной нормальной ткани белки, изменяться спектры изоферментов и антигенов, что и используется для ранней диагностики опухолевых заболеваний. Однако указанные изменения оказались не строго специфичными, поскольку аналогичные белки, их модификации и аналогичные изменения спектров изоферментов и антигенов характерны как для периода эмбрионального развития, так и для периодов длительной и значительной активации размножения клеток нормальной ткани.

Так, открытие в свое время α-фетопротеина как специфического ракового белка оказалось ошибочным. Позднее он был обнаружен и в нормальных тканях в случаях стимулированной пролиферации.

В этих случаях также изменяется соотношение изоформ белков, что отражается в изменении, например, спектра гемоглобинов и спектра изоферментов. Изменяется и антигенная характеристика белков. Важно, что имеются общие особенности всех указанных изменений.

1. Эти изменения приводят к качественному подобию спектров изоформ белка нормальной ткани в состоянии активной пролиферации и нормальной регенерирующей ткани к спектрам изоформ белка эмбриональной и активно растущей злокачественной ткани. Такое же подобие наблюдается и по спектру антигенов.

2. Указанные изменения в нормальной ткани возникают вслед за стимуляцией пролиферативной активности и исчезают, как только пролиферативная активность нормализуется. Это не зависит от типа ткани.

3. Указанные изменения происходят и при воздействиях физических факторов на организм человека и животных, но только в тех случаях и в то время, когда происходит усиление пролиферативной активности ткани. Новые белки в этом случае, как правило, не появляются, но может происходить их модификация.

Следовательно, во всех указанных случаях можно говорить прежде всего о генетической регуляции, о процессах репрессии — дерепрессии определенных локусов генома в зависимости от состояния клетки, об однотипности и неспецифичности процессов генной регуляции для разных тканей организма и при воздействии разных факторов, вызывающих состояние активной пролиферации ткани. Указанные изменения не требуют возникновения мутации, т. е. изменений в структурных генах. Необходимые процессы генной регуляции синтеза белка описаны достаточно подробно во многих руководствах, и на них мы останавливаться не будем.

Однако механизмы возможной связи между изменением пролиферативной активности и изменением изоформ белков не ясны. В связи с изложенным следует рассмотреть ошибки рибосомального синтеза, не связанные и связанные с генетической регуляцией. Особое внимание было обращено на тот факт, что закономерные ошибки рибосомального синтеза белка обнаруживаются и в опытах in vitro в бесклеточной среде при отсутствии генной регуляции.

Наиболее распространенное мнение о механизме работы рибосомы предполагает, что рибосома, состоящая из двух неравных субчастиц, ползет по матричной РНК от 5'-конца к 3'-концу, считывает информацию об аминокислотной последовательности и присоединяет соответствующие аминокислоты в полипептидную цепь. При этом малая субчастица рибосомы осуществляет контакт с мРНК. Полипептидная цепь собирается на особых центрах большой субчастицы. При этом механизм сборки полипептида, динамика процесса остаются неясными.

А. С. Спирин и Л. П. Гаврилова предложили свою схему строения рибосомы, которая лучше соответствует наблюдаемым фактам, вскрывает движущие силы и механизм работы рибосомы. В основу положено разделение функций между субчастицами: большой отведена роль полимерного носителя, удерживающего последовательно наращиваемый пептид, а малой субчастице — роль «подносчика» аминокислот. Обе субчастицы соединены подвижным шарниром и связаны с одной и той же матрицей. Выделен рабочий цикл рибосомы, состоящий из пяти «шагов». Сначала «подносчик» связывается с мРНК, отодвигается от носителя (рибосома открывается) и вылавливает из цитоплазмы аминоацилтранспортную РНК, соответствующую очередному кодону матрицы. Пока рибосома открыта, совершается перебор соответствия кодонов антикодонам и, следовательно, правильного выбора очередной аминокислоты. Когда аминокислота выбрана, рибосома закрывается и приводит аатРНК в контакт с наращиваемым полипептидом и очередная аминокислота (точнее, ее остаток) занимает свое место в цепи, а освобожденная тРНК уходит в цитоплазму и находит себе новую молекулу этой же аминокислоты. Периодическое размыкание и смыкание рибосомальных субчастиц является приводным механизмом, обеспечивающим все перемещения тРНК, мРНК и аминокислот в процессе синтеза пептидной цепи.

Каждому кодону мРНК соответствует антикодон на аатРНК. Каждый кодон состоит из триплета нуклеотидов (разные сочетания урацила, аденина, цитозина и гуанина). Каждая из 20 аминокислот имеет характерные только для нее кодоны (табл. 3). Например, тирозин кодируется следующими кодонами: УАУ (урацил—аденин—урацил) и УАЦ (урацил—аденин—цитозин). Метионин кодируется одним кодоном, в то время как ряд других аминокислот — большим числом, например шестью кодонами (лейцин, серин, аргинин). Для каждой аминокислоты все кодирующие ее кодоны равнозначны.

23
{"b":"281017","o":1}