Литмир - Электронная Библиотека
Содержание  
A
A

Сегодня термин «антропология» употребляется в двух основных значениях: как раздел биологии (так называемая физическая антропология), посвященный проблемам антропогенеза и морфологическим особенностям человека, и как раздел культурологии (так называемая культурная антропология), изучающий динамику развития культуры в человеческом обществе. Причем и биологи, и культурологи часто употребляют термин «антропология», подразумевая именно свою науку, что лишний раз показывает отчужденность данных направлений.

Кроме того, в середине XX века в Германии возникло новое философское направление – философская антропология, – базирующееся на методологических установках М. Шелера (1874–1928), Г. Плеснера (1892–1985), А. Гелена (1902–1976) и претендующее на синтез различных наук для постижения природы человека. В дальнейшем философской антропологией стали называть всю проблематику философии человека.

Во второй половине XX века термин «антропология» стал широко применяться для обозначения самых различных направлений, без четких границ области исследований (историческая антропология, политическая антропология, экономическая антропология и т. д.). Часто такие направления исчезали, не успев родиться. Однако столь вольное обращение с терминами не безболезненно для научной дисциплины, поэтому стандартизация терминологии является насущной необходимостью.

Антропология как естественно-научная дисциплина должна стать фундаментом «человекознания». Необходимо разработать методологические подходы для плодотворной интеграции достижений всех наук о человеке: генетики, психологии, культурологии, нейрофизиологии, этологии человека, социобиологии, биологии развития и многих других. Только тогда мы сможем надеяться на постижение феномена человека!

Глава 2. Молекулярные основы жизни

Фундаментальную роль в структуре живой материи играет первый уровень ее организации – молекулярный. На этом уровне анализируются химические вещества, составляющие живой организм, взаимосвязь их структуры и функции.

Все имеющиеся в клетке биохимические соединения можно разделить на неорганические (вода и минеральные соли) и органические (соединения углерода).

2.1. Органические соединения в составе живых организмов

Органические соединения характерны только для живых организмов. Можно сказать, что жизнь на Земле построена на основе углерода, который обладает рядом уникальных свойств. Основное значение для выполнения роли «кирпичиков» жизни имеет способность атомов углерода соединяться друг с другом, образуя цепи и кольца. Именно этой способностью и объясняется чрезвычайное разнообразие органических соединений.

Разнообразие органических соединений

Хотя органические молекулы составляют менее 1 % всех молекул клетки (99 % молекул приходится на долю воды), они определяют протекание основных биохимических процессов. В клетке встречаются как малые органические соединения (содержащие до 20 или чуть более атомов углерода), так и большие, сложные молекулы – биополимеры, состоящие из многих единиц – мономеров.

Биополимеры образуют 4 класса биомолекул: белки, нуклеиновые кислоты, углеводы и липиды. Ключевую роль в жизнедеятельности организмов играют белки и нуклеиновые кислоты. Углеводы и липиды представляют собой очень разнородные группы, объединяющие соединения с различной структурой и биологическими функциями. Деление на эти группы – скорее дань исторической традиции, чем результат биохимического анализа. С них мы начнем рассмотрение молекулярного уровня организации жизни.

Углеводы

Углеводы – это наиболее распространенная в природе группа органических веществ. Основная их функция – энергетическая. Все углеводы содержат гидроксильные группы (—ОН) вместе с альдегидной или кетогруппой. Выделяют три группы углеводов (табл. 2.1).

Наибольшее значение в природе среди моносахаридов имеют пентозы (рибоза, дезоксирибоза, рибулоза) и гексозы (глюкоза, фруктоза, галактоза). Производными моносахаридов являются «сахарные» кислоты (к ним относятся, например, аскорбиновая кислота – витамин С), многоатомные спирты, гликозиды (к ним относятся некоторые антибиотики – эритромицин, стрептомицин, пуромицин и др.), аминосахара. Все их можно рассматривать как моносахара с дополнительной функциональной группой (—СООН, – NH2 и др.).

Среди олигосахаридов наиболее значимы мальтоза (глюкоза + глюкоза), сахароза (глюкоза + фруктоза), лактоза (глюкоза + галактоза), рафиноза (глюкоза + фруктоза + галактоза). Чрезвычайно важна роль гликопротеидов, определяющих сигналы узнавания на клеточном уровне. Нарушения «сигнализации» приводят к многочисленным патологиям, в том числе и к злокачественным новообразованиям.

Таблица 2.1. Классификация углеводов

Антропология и концепции биологии - _01.jpg

К важнейшим гомополисахаридам относятся целлюлоза, гликоген, крахмал. Мономерами их является глюкоза, а различия определяются особенностями структуры (линейной или разветвленной).

Гетерополисахариды обычно состоят из повторяющихся дисахаридов. Примерами их могут служить хитин и муреин, выполняющие структурную функцию в клетках грибов, бактерий, членистоногих, а также мукополисахариды – важнейший элемент соединительной ткани животных с разнообразными функциями.

Использование конкретных полисахаридов как структурных и энергетических компонентов клетки является одной из фундаментальных характеристик при делении представителей живой природы на отдельные царства.

Липиды

Липиды – это обширная группа неполярных, нерастворимых в воде органических соединений. Они отличаются большим разнообразием, но в общем виде представляют собой сложные эфиры какого-либо спирта и жирной кислоты.

Жирные кислоты – это карбоновые кислоты с длинной (12–20 атомов углерода) цепью. Они могут быть насыщенными (содержат только С – С-связи) или ненасыщенными (содержат одну или несколько С = С-связей).

Липиды делятся на простые и сложные (табл. 2.2).

Наиболее распространены в природе жиры (как универсальный источник энергии) и фосфолипиды (как неотъемлемый компонент клеточной мембраны). Важную защитную функцию выполняют воски. Гликолипиды являются компонентами миелиновой оболочки нервных волокон.

Особую группу веществ составляют производные липидов. Наибольшее значение среди них имеют полициклические соединения – стероиды (к ним относятся холестерин, стероидные гормоны, желчные кислоты) и пигменты каротиноиды. Производными липидов являются все жирорастворимые витамины (А, D, Е, К).

Таблица 2.2. Классификация липидов

Антропология и концепции биологии - _02.jpg

Белки

Белки имеют первостепенное значение в жизни организмов. Огромное разнообразие живых существ в значительной степени определяется различиями в составе имеющихся в их организме белков. Например, в организме человека их известно более 5 млн.

Белки – это полимеры, мономерами которых являются аминокислоты (рис. 2.1).

Антропология и концепции биологии - _03.jpg

Рис. 2.1. Структура аминокислоты

В природных белках встречается 20 различных аминокислот, которые отличаются друг от друга только радикалами (R). Все они являются α-аминокислотами, так как карбоксильная группа и аминогруппа у них присоединена к одному атому α-углерода.

3
{"b":"277683","o":1}