[√-5] — кольцо (убедитесь в этом), но здесь, говоря математическим языком, мы вступаем в запретную зону. Мы привыкли к стандартным свойствам делимости и к тому, что разложение числа на простые множители всегда является единственным. К примеру, рассмотрим число 21. Имеем 21 = 3·7 и на этом разложение на множители заканчивается: 21 можно разложить на простые множители единственным способом, и этими множителями будут 3 и 7. Это утверждение следует из основной теоремы арифметики: на множестве
разложение любого числа на простые множители является единственным. На множестве
[√-5] это утверждение уже не будет выполняться: здесь мы можем разложить 21 на простые множители двумя способами:
3·7 = (4 + √-5)(4 — √-5) = 21.
На этом множестве разложение на простые множители уже не будет единственным, что, к своему величайшему неудовольствию, заметил еще Эрнст Куммер (1810–1893). Это утверждение, которое кажется не особенно важным и записывается всего одной строкой, помешало алгебраистам XIX доказать теорему Ферма и доставило им немало хлопот.
Чтобы как-то исправить ситуацию и обойти проблему стороной, сам Куммер ввел идеальные числа. Они оказались не слишком полезны, так как принадлежали уже не к
[√-5], а к другому, большему кольцу. Это были даже не числа — сегодня мы бы назвали их множествами чисел, эквивалентных между собой. Тогдашним математикам были неизвестны общепринятые на сегодняшний день понятия фактор множества и гомоморфизма, и какой-то порядок и логику в мир идеалов внес лишь
Рихард Дедекинд (1831–1916). За ним последовали другие алгебраисты, которые расчистили территорию и приступили к раскопкам. Важное место среди них занимала Эмми Нётер.
Идеалы обладают еще одной примечательной особенностью — речь идет о цепочке идеалов. Не будем следовать за Нётер и пытаться объяснить абстрактное понятие, а ограничимся тем, что приведем один очень простой пример — идеалы кольца целых чисел
.
В этом мире (он представляет собой область целостности, то есть «хорошее» кольцо) правит бал основная теорема арифметики: для всех чисел разложение на простые множители является единственным, и ничто не нарушает гармонию. Идеалами в этом мире будут множества n
, состоящие из целых чисел, кратных
n. Количество таких идеалов, как и самих чисел, будет бесконечно велико. Сумма и произведение идеалов определяются очень просто:
Идеалы, которые представляют собой множества чисел, и обычные числа ведут себя одинаково, одинаково раскладываются на множители, и с точки зрения арифметики эквивалентны. Они эквивалентны даже в таком непростом аспекте, как делимость. В самом деле, «Ь делится на а» для идеалов можно выразить как b
a
. Гениальность Нётер заключается в том, что она выстроила цепочку идеалов, объединенных функцией принадлежности
, которая отражает их делимость друг на друга.
Так как любое отношение делимости рано или поздно заканчивается некоторым числом, то рано или поздно закончится и любая цепочка идеалов. «Хорошие» цепочки идеалов обязательно заканчиваются, то есть являются конечными. Кольца, на которых не существует бесконечных цепочек идеалов, называются нётеровыми кольцами. Именно этим кольцам Эмми уделяла особое внимание в своих исследованиях.
Позднее алгебраисты доказали эквивалентность следующих утверждений.
1. Кольцо А является нётеровым (иными словами, возрастающие цепочки идеалов на нем конечны).
2. Любой идеал на А является конечнопорожденным.
3. Любое множество идеалов на А содержит наибольший идеал.
В 1999 году Австралийский математический фонд выпустил футболки, на которых были изображены все возрастающие цепи для идеала 18
на множестве
. Использовать другой пример помешали ограниченные размеры футболок. На футболках были изображены следующие цепи идеалов:
Как и следовало ожидать, эти цепочки конечны, а кольцо
является нётеровым. Между прочим, Гильберт доказал, что если кольцо А является нётеровым, то нётеровым будет и кольцо многочленов
А[
Х].
* * *
ТЕОРЕМА ЭММИ И ШАХМАТИСТА
Алгебраист Эмануэль Ласкер (1868–1941) был выдающимся математиком и чемпионом мира по шахматам. Он подробно рассмотрел обычные, простые и примарные идеалы. Не будем слишком углубляться в абстрактную алгебру и рассмотрим кольца А, которые также представляют собой области целостности. Примерным идеалом на этих кольцах называется идеал I, отличный от исходного кольца А, на котором при ab
I и
а I существует
n такое, что
bn I. (При
n = 1 этот идеал называется простым.) Ласкер описал очень широкий класс колец (сегодня они называются кольцами Ласкера) на основе одного интересного свойства их идеалов. Любой идеал можно представить в виде пересечения конечного числа примарных идеалов.
Эмми Нётер доказала теорему, сегодня известную как теорема Нётер — Ласкера, которая звучит следующим образом:
«Любая нётерова область целостности является кольцом Ласкера».
Эта теорема, относящаяся к абстрактной алгебре, связывает между собой два, казалось бы, очень далеких понятия — конечные цепочки идеалов и пересечения примарных идеалов. Возможно, вы не заметили (и, по правде говоря, извиняться за это вовсе не стоит), что если мы применим теорему Ласкера — Нётер к кольцу
, то получим основную теорему арифметики: любое целое число можно представить в виде произведения простых множителей единственным способом. Термин «нётерово кольцо», который сегодня используется повсеместно, ввел великий французский математик
Клод Шевалле (1909–1984), один из основателей группы Бурбаки.
* * *
Конец истории
Не стоит и говорить, что уже в 1930-е годы Эмми Нётер пользовалась среди математиков невероятным уважением. Пример тому — ее участие в Международном конгрессе 1932 года. На следующий год к власти в Германии пришли нацисты, и с огромной решительностью, которая могла сравниться только с их же глупостью, принялись изгонять из университетов всех преподавателей-евреев. От антисемитизма пострадала и Эмми. Напрасно протестовали ее друзья и знакомые — она и многие ее коллеги (Томас Манн, Альберт Эйнштейн, Стефан Цвейг, Зигмунд Фрейд, Макс Борн и другие) были вынуждены прекратить преподавание в Германии и покинуть страну (как стало ясно позднее, такая возможность выпала не всем), чтобы распространять свои зловредные идеи среди представителей других, неарийских рас. Что именно зловредного увидели нацисты в современной алгебре, мы никогда не узнаем. Вероятнее всего, нацисты сами не знали ответа на этот вопрос.