Для создания математического анализа обязательно (и неизбежно) требовалось признать, что задачи о касательной и о квадратуре являются обратными друг другу. Говоря современным языком, необходимо было показать, что дифференцирование и интегрирование — взаимно обратные операции. Именно в этом заключается основная теорема анализа, которая неспроста носит это название. Этот факт был известен Ферма, Торричелли и прежде всего Барроу, однако по причинам, о которых мы расскажем позднее, они не поняли всю его важность для решения задач, его значимость как связующего элемента двух классов задач — о касательных и квадратурах. Основная теорема анализа указала математикам путь, которым нужно следовать: выделять общее и наиболее значимое из множества частных случаев.
Исаак Барроу был учителем Ньютона. Его работы лежат в основе анализа бесконечно малых.
Исаак Барроу (1630—1677) был одним их тех гигантов, о которых говорил Ньютон в письме Роберту Гуку в феврале 1676 года: «Если я видел дальше других, то потому, что стоял на плечах гигантов» (из главы 3 вы узнаете, что эта фраза допускает еще одно, достаточно нелицеприятное толкование). Барроу был учителем Ньютона в Кембридже и первым лукасовским профессором математики. Он оставил этот пост в 1669 году (его заменил Ньютон), занялся богословием (он был англиканским пастором с 1660 года) и стал духовником короля Англии Карла II. Возможно, он подошел ближе всех к открытию математического анализа, за исключением Ньютона и Лейбница. Ему не хватало самой малости — знаний аналитической геометрии. Барроу создал метод нахождения касательных, очень похожий на вычисление производной. Кроме того, он добился важных результатов при решении задач по расчету площадей, а также доказал, что задачи нахождения касательной и задачи на вычисление площади являются обратными. Возможно, он руководствовался идеями Торричелли, с которым познакомился во время путешествия во Францию, Италию, Германию, Голландию и Константинополь, когда ему пришлось по религиозным мотивам покинуть Англию, где в то время правил Оливер Кромвель. Его доказательство приводится в лекции X его книги Lectiones geometricae. Оно является чисто геометрическим и выполняется для монотонных кривых. В нем также используется старое определение касательной как прямой, которая касается кривой в единственной точке.
Чего же не хватило Барроу, чтобы открыть анализ бесконечно малых? Ему требовалось перейти от частной задачи нахождения касательной к общей задаче определения изменения функции, то есть ввести понятие, эквивалентное понятию флюксии у Ньютона или, с небольшими отличиями, понятию дифференциала у Лейбница, а также разработать алгоритм расчетов (правила нахождения производной). Однако для этого Барроу требовалась аналитическая геометрия: она позволила бы описать кривые (геометрические объекты) с помощью формул (алгебраических объектов) и перейти от задачи нахождения касательной к задаче определения производной функции. Алгебраические методы были также обязательными для создания правил вычисления производных. С другой стороны, без сведения процесса нахождения кривой (вычисления производной) к простому алгоритмическому методу с возможностью инвертирования (то, что мы называем вычислением первообразной) тот факт, что задачи нахождения касательной и определения квадратуры являются взаимно обратными, был бы не слишком полезен. По этой причине Барроу не осознал всю значимость доказанного им утверждения. Барроу не нравилась алгебраизация геометрии, выполненная Ферма и Декартом, что в итоге стоило ему авторства математического анализа. Он оставил этот почетный титул Лейбницу и Ньютону.
Математический анализ появился во время научной революции, продолжавшейся весь XVII век, и решающую роль в этом сыграли два ученых первой величины: Исаак Ньютон и Готфрид Лейбниц. О математическом анализе можно говорить тогда, когда обобщены два базовых понятия (прообразы современной производной и интеграла), разработаны алгоритмы их вычисления (правила вычисления производной) и показано, что эти понятия являются взаимно обратными (это утверждение сегодня известно как основная теорема анализа). Для решения задач нахождения касательной, максимумов и минимумов, квадратуры, центра тяжести и других, которыми занимались предшественники Лейбница и Ньютона, достаточно использовать эти базовые понятия, должным образом интерпретированные, и применять алгоритм их вычисления, основанный на правилах, о которых мы рассказали в главе 1.
Глава 3.
Ньютон, последний из волшебников
День 13 июля 1936 года стал поворотным в изучении биографии Исаака Ньютона и его наследия. В этот и последующий день на аукционе «Сотбис» было продано 332 лота: рукописи, письма и другие документы, принадлежавшие Ньютону. Запутанная история рукописей Ньютона не лишена очарования, так как она открывает перед нами истинный портрет ученого, более сложный и многогранный, чем было принято считать в XVIII и XIX веках.
Сохранилось огромное количество рукописей, писем и других документов Ньютона, несмотря на то что, по его собственным словам, в последние месяцы жизни он сжег большую часть писем, а также некоторые статьи невысокого качества, которые не хотел передавать потомкам. Возможно, это и в самом деле было так, но стоит отметить, что Ньютон окружил себя ореолом тайн и загадок, что сделало его практически легендарной фигурой. Взять хотя бы удивительную и всем известную историю с яблоком, принесшую ему славу гения. Сам Ньютон рассказал эту историю Уильяму Стьюкли незадолго до своей смерти. Это одна из четырех дошедших до нас версий; источником их всех является сам Ньютон, которому на тот момент было уже за семьдесят.
Вот что пишет Стьюкли: «После обеда установилась теплая погода, мы вышли в сад и пили чай в тени яблонь. Он [Ньютон] сказал мне, что мысль о гравитации пришла ему в голову, когда он точно так же сидел под деревом. Он находился в созерцательном настроении, когда неожиданно с ветки упало яблоко. “Почему яблоки всегда падают перпендикулярно земле? — подумал он. — Почему не в сторону и не вверх, а всегда к центру земли?” Очевидно, причина состоит в том, что земля притягивает его. Вещество должно обладать силой притяжения, и центр притяжения к Земле должен находиться в центре Земли, а не где-либо еще. Поэтому яблоко падает перпендикулярно земле в направлении ее центра. <…> Существует сила, которую мы будем именовать гравитацией, простирающаяся на всю Вселенную»,
Однако вернемся к истории с рукописями. После смерти Ньютона, который не оставил завещания, произошла размолвка между восемью возможными наследниками — потомками двоих дочерей и сына матери Ньютона от второго брака с протестантским священником Барнабой Смитом. За исключением любимой племянницы Ньютона Кэтрин Бартон и ее супруга Джона Кондуита, остальные наследники хотели без промедлений получить доход от наследства, поэтому в июле 1727 года, вскоре после смерти ученого, его библиотека была продана некоему Джону Хаггинсу за 300 фунтов — на 30 фунтов больше изначально объявленной стоимости. Также были проданы все бумаги Ньютона, которые были готовы к публикации.
Иллюстрация к истории о яблоке, после которой, как говорят, у Ньютона и родилась идея о теории всемирного тяготения.
Документы и рукописи Ньютона, которые не удалось продать, перешли к дочери супругов Кондуит, которую также звали Кэтрин. В 1740 году она вышла замуж за виконта Лаймингтона. Далее бумаги перешли к их сыну, который стал графом Портсмутским — отсюда и название «Портсмутская коллекция», под которым часто упоминают наследие Ньютона. В 1872 году было начато составление первой описи бумаг Ньютона, для чего они были переданы в Кембриджский университет. Результаты описи были опубликованы в 1888 году, после чего все документы вернулись в семью графа Портсмутского, за исключением статей по математике, писем, книг и других документов, которые были подарены университету семьей графа.