Литмир - Электронная Библиотека
Содержание  
A
A

Чтобы реализовать такую возможность, группа Стивенс использовала специальным образом приготовленные наночастицы золота размером порядка десяти нанометров. В состоянии взвеси они были соединены с введенными в раствор цепочками, состоящими из связанных друг с другом аминокислот. Такие цепочки называются пептидами. Присоединив пептиды к поверхности золотых наночастиц, исследователи получили возможность на следующем этапе соединить эти частицы друг с другом в некую «сеть», потому что каждый синтезированный ими пептид имел на другом своем конце особую химическую группу под названием «Fmoc», способную склеиваться с себе подобной на другом пептиде.

Лондонская группа применила эту сеть наночастиц для диагностирования рецидивов рака простаты. В марте 2010 года исследователи доложили об успехе эксперимента. Были выявлены мельчайшие следы особого фермента nACT-PSA, который производят пораженные клетки в случае рака простаты. Если простата удалена, то повторное появление этого фермента при анализе крови сигнализирует о рецидиве. Обычные методы анализа не позволяют заметить рецидив на ранней стадии, потому что количества фермента еще очень мало. Метод группы Стивенс позволил искусственно «усилить» этот сигнал опасности, причем в качестве «усилителя» исследователи заставили работать сам искомый фермент.

Вот как это происходит. Исходный раствор, содержащий «сеть» наночастиц, имеет голубой цвет. Если же к этому раствору во время анализа добавить даже единичные раковые клетки, он становится красным. Цвет меняется потому, что вновь появившиеся раковые клетки выделяют молекулы фермента nACT-PSA, который имеет свойства протеазы, то есть разрушителя пептидных связей. Как только эти молекулы разрушают связи между пептидами, «сеть» распадается, а поскольку при этом на концах освободившихся пептидов появляются положительные заряды, частицы отталкиваются друг от друга и рассеиваются в растворе. Из-за этого раствор и меняет цвет, что происходит даже при наличии в пробирке всего нескольких молекул фермента, потому что одна и та же молекула, покончив с одной пептидной связью, тут же принимается за другую и в считанные минуты разрушает всю «сеть». Таким образом появляется возможность диагностировать болезнь на самых ранних ее стадиях.

Еще одна медицинская функция наночастиц — это доставка нужных химических веществ в поврежденные места организма и использование их там для лечения. Так, ученые из американского университета Пердью недавно создали полимерные наночастицы (они назвали их «сополимерными микроклетками»), способные доставлять в нейроны спинного мозга такие химические препараты, которые стимулируют восстановление нервных окончаний в случае повреждений позвоночника. А исследователи из Хьюстона создали «умные фуллерены» (полые шарики из атомов углерода), внутри которых находятся молекулы белка, реагирующего на повышенный уровень глюкозы в крови, и жировые микрошарики, содержащие инсулин, которые «по сигналу» этого белка высвобождают инсулин в кровь.

Особенно эффективным представляется — в перспективе — нановоздействие на раковые клетки. Мембраны раковых клеток по ряду причин более «рыхлы», чем мембраны здоровых клеток, и поэтому наночастицы, распознав их, легче проникают внутрь. А проникнув, легче накапливаются, потому что раковые опухоли не имеют той системы лимфатического «дренажа», которой располагают здоровые ткани. Эти особенности позволяют наночастицам достаточно плотно наполнять раковые клетки. Это, с одной стороны, поможет такие клетки (даже одиночные) лучше распознавать при сканировании, а с другой стороны — позволит доставлять прямо в них препараты, способные их уничтожить.

В последнее время на этом пути достигнуты многообещающие результаты. Так, группа американских исследователей под руководством профессора Батта синтезировала наночастицы, которые помогают уничтожать клетки, пораженные раком в толстом кишечнике, не затрагивая здоровые клетки. Эти наночастицы, по форме напоминающие гантели, сделаны, как бутерброд: крупица золота заключена между двумя крупицами окиси железа. Исследователи химически присоединили к этим «гантелям» антитела, способные распознавать специфические молекулы на поверхности раковых клеток. В результате наночастицы входят именно в эти клетки, после чего кишечник облучается лазером, что никак не влияет на здоровые клетки, но воспринимается частицами золота. Это вызывает разогрев и гибель раковых клеток.

Такой метод можно назвать «умной терапией», потому что он нацелен только на определенные — больные — клетки и убивает их и только их. Другой вариант «умной» терапии предложила в марте 2010 года группа канадских ученых. Эти исследователи показали, что углеродные фуллерены, подвергнутые короткому воздействию мини-лазера мощностью всего 500 милливатт, теряют свою прочность и так быстро выделяют энергию, что попросту загораются или даже взрываются. Введя в пробирке множество фуллеренов в культуру раковых клеток и направив на них луч мини-лазера, исследователи наблюдали, как эти клетки лопаются в результате выделения внутреннего тепла. Дело теперь «за малым» — научиться доставлять такие фуллерены в раковые клетки больного человека.

По другому пути пошел американский исследователь Марк Дэвис, который в том же марте 2010 года опубликовал результаты эксперимента, в котором наночастицы использовались для введения в раковые клетки особых химических «разрушителей». Дэвис создал наночастицы, состоящие из крохотного (размером около 70 нанометров) кусочка специально выращенного полимерного материала с прицепленными к нему молекулами siPHK. Так называются небольшие (длиной в пару десятков химических звеньев) молекулы, которые обладают замечательной в данном случае особенностью подавлять производство тех или иных белков. Для данного эксперимента были отобраны такие siPHK, которые нацелены на подавление белка RRM2 (этот белок, как считается, играет важную роль в размножении раковых клеток). Проверка происходила на трех раковых больных, которым в кровь были введены наночастицы с siPHK. По расчетам Дэвиса, они должны были опознать опухолевые клетки, проникнуть в них и там распасться на безвредный полимер и свободные siPHK, которые займутся подавлением RRM2. Результаты эксперимента оказались ободряющими. Биопсия показала, что во всех трех случаях наночастицы действительно проникли в раковые клетки, а в одном случае в клетках опухоли было обнаружено снижение концентрации белка RRM2, чего и следовало ожидать от действия этих РНК.

Любопытно, что во всех описанных выше экспериментах применялись золотые наночастицы. На данный момент они — главное орудие зарождающейся «умной нанотерапии». Это связано с тем, что золото обладает биологической совместимостью, инертно и легко модифицируется. Изменяя размер и форму золотых частиц, можно «настроить» их на поглощение разных длин «разогревающих» волн. Но оказалось, что золото имеет и другие полезные для нанотерапии свойства. Неожиданное недавнее открытие показало, что положительно заряженные наночастицы золота накапливаются в почках, а отрицательно заряженные — в печени и селезенке, что позволяет проводить весьма тонкое изучение состояния этих органов. Так что можно ожидать, что вскоре наряду с наноонкологией появятся также нанонефрология и другие подразделы наномедицины. Впрочем, ученые уже поговаривают о том, что использование наночастиц из окиси железа, иначе говоря — обычной ржавчины, тоже может принести большую медицинскую пользу. В частности, оно обещает в будущем совершить скачок в деле диагностики рака, поскольку магнитные свойства таких частиц позволят выявлять места их накопления с помощью метода магнитного резонанса.

В общем фронт поисков расширяется, и это не может не радовать.

Магнитные наночастицы: достижения и перспективы

Будущее приходит по-разному. Иногда по-бетховенски властно грохоча кулаком, а порой — вот как лет двадцать назад, когда сначала в специальной литературе, а потом и в массовой печати начали впервые появляться отрывочные сообщения о новом и необычном биологическом инструменте — магнитных наночастицах. Поток сообщений постепенно нарастал, и теперь редко уже проходит месяц, чтобы не вспыхнул в печати или Интернете очередной манящий заголовок. Ну, вот, к примеру, такая новость — магнитные частицы в коронарных стентах. Установка коронарного стента — кардиологическая операция, которой подвергаются миллионы людей. Надувная проволочная трубка стента держит сосуды открытыми и обеспечивает беспрепятственную циркуляцию крови. Для того чтобы стент закрепился, эндотелиальные клетки сосуда должны постепенно обволочь трубку. Обычно это занимает четыре — шесть недель, и все это время пациента кормят аспирином, чтобы в стенте не образовался кровяной сгусток. Сейчас кардиологи клиники Майо в штате Миннесота (США) разработали новую процедуру. Перед операцией они извлекают эндотелиальные клетки из сосудов пациента, в лабораторных условиях размножают их, внедряют в них магнитные наночастицы и возвращают обратно в кровь. Затем вводят больному стент, предварительно его намагнитив. Клетки, содержащие магнитные наночастицы, влекутся к намагниченному стенту и надежно обволакивают его за считанные дни вместо недель.

35
{"b":"247531","o":1}