Литмир - Электронная Библиотека
Содержание  
A
A

Опыт эксплуатации показал неминуемость старения электротехнического фарфора, электропроводность поверхностного слоя стекла при увлажнении, разрушение стекла вследствие выщелачивания и электролиза, хрупкость этих материалов.

Изолятор состоит из изолирующей части, изготовленной из электротехнического фарфора или щелочного стекла, и металлической арматуры, служащей для крепления изолятора к заземленной металлической или железобетонной конструкции и для крепления к изолятору токопроводящих частей. Изолирующие части соединяются с арматурой с помощью цементно-песчаных связок из портланд-цемента.

Несмотря на указанные выше недостатки, фарфоровые изоляторы имеют широкое применение вследствие их высокой электрической и механической прочности, а также стойкости к атмосферным воздействиям.

Достоинствами изоляторов из щелочного стекла являются также высокие электрические и механические характеристики, хорошая стойкость к перепадам температуры и к воздействию химически агрессивных сред. Однако при сильных концентрированных ударах механическая прочность стеклянных изоляторов становится ниже, чем у фарфоровых, так как закаленное стекло рассыпается на мелкие кусочки (например, при ударе камнем).

Особенностью конструкции изоляторов является то, что их изолирующая часть соединяется с арматурой изолятора с помощью цементно-песчаной связки. Материалы соединяемых элементов обладают различными коэффициентами линейного расширения, то есть неодинаковы. Для компенсации деформаций, возникающих из-за разницы температурных коэффициентов линейного расширения, и снижения коэффициента трения между поверхностями раздела контактирующих элементов наносятся компенсирующие промазки в виде тонкого слоя битумного компаунда и устанавливаются эластичные прокладки.

Опорные изоляторы делятся на опорно-стержневые и опорно-штыревые.

Опорно-стержневые изоляторы, как правило, применяются для внутренней установки в РУ 6-35 кВ и представляют собой полые фарфоровые изоляторы, армированные фланцами для установки изоляторов и колпачками для крепления токоведущих частей.

Опорно-штыревые изоляторы применяются для внутренней и наружной установки. Изоляторы на напряжение 110 кВ и выше собираются в колонки из изоляторов напряжением 35 кВ.

Подвесные изоляторы применяются для подвешивания проводов к опорам ВЛ и шин РУ к металлическим и железобетонным конструкциям ПС. Эти изоляторы разделяются на тарельчатые и стержневые.

Тарельчатый изолятор содержит изолирующий элемент, к которому при помощи цементной связки крепится чугунная, покрытая цинком головка с гнездом для введения в него стержня другого изолятора при их соединении в гирлянду.

Защита изоляторов от разрушения при температурных перепадах обеспечивается применением компенсирующих промазок и эластичных прокладок.

Подвесные изоляторы стержневого типа применяются на ПС в качестве растяжек для крепления воздушных выключателей и РВ. В этих случаях фарфор работает на растяжение, поэтому механическая прочность стержневых изоляторов ниже прочности тарельчатых.

В соответствии с требованиями ПУЭ, выбор изоляторов из стекла и фарфора должен производиться по удельной эффективной длине пути утечки в зависимости от степени загрязнения в месте расположения электроустановки и ее номинального напряжения.

Длина пути утечки изолятора — это наименьшее расстояние по поверхности изоляционной детали между металлическими частями разного потенциала.

Эффективная длина пути утечки — часть длины пути утечки, определяющая электрическую прочность изолятора в условиях загрязнения и увлажнения.

Степень загрязнения — это показатель, учитывающий влияние загрязненности атмосферы на снижение электрической прочности изоляции электроустановок.

ГОСТ 9920—89 различает следующие степени загрязнения:

I — легкая при длине пути утечки 1,6 см/кВ;

II — средняя при длине пути утечки 2,0 см/кВ;

III — сильная при длине пути утечки 2,5 см/кВ;

IV — очень сильная при длине пути утечки 3,1 см/кВ.

Длина пути утечки L (см) изоляторов из стекла и фарфора должна определяться по формуле:

L = λэ U k, (6.2)

где λэ — удельная эффективная длина пути утечки, см/кВ (определяется по табл. 6.2);

U — наибольшее рабочее междуфазовое напряжение, кВ (по ГОСТ 721);

k — коэффициент использования длины пути утечки (по таблицам ПУЭ). Это поправочный коэффициент, учитывающий эффективность использования длины пути утечки изолятора.

Таблица 6.2

Эксплуатация электрических подстанций и распределительных устройств - i_064.png

Удельная эффективная длина пути утечки поддерживающих гирлянд и штыревых изоляторов ВЛ на высоте более 1000 м над уровнем моря должна быть увеличена по сравнению с нормированной в табл. 6.2:

от 1000 до 2000 м — на 5 %;

от 2000 до 3000 м — на 10 %;

от 3000 до 4000 м — на 15 %.

Количество подвесных тарельчатых изоляторов (m) в поддерживающих гирляндах и в последовательной цепи гирлянд специальной конструкции (V-образных, А-образных, Y-образных и др.) для ВЛ на металлических и железобетонных опорах должно определяться по формуле:

m = L /Хи, (6.3)

где Lи — длина пути утечки одного изолятора по стандарту или техническим условиям на изолятор конкретного типа, см.

Если расчет m не дает целого числа, то выбирают следующее целое число.

Основными причинами повреждения изоляции на ПС являются следующие:

низкое качество изготовления изоляторов из-за применения некондиционного сырья;

нарушение режимов обжига и охлаждения;

попадание в стекломассу стеклянных изоляторов кусочков шихты, огнеупорных материалов, в местах нахождения которых возникают местные напряжения, приводящие к разрушению изолятора при колебаниях температуры и механическом воздействии.

К основным факторам старения изоляции относится воздействие механических нагрузок, в результате чего в местах сочленений диэлектрика с арматурой образуются трещины, ускоренное старение компенсирующих промазок и прокладок, приводящее к снижению прочностных характеристик изоляторов, влияние изменений температуры окружающей среды, а также влияние атмосферных химически активных веществ.

Поверхность изоляторов загрязняется уносами промышленных предприятий и различными непромышленными уносами (грунтовая пыль, морская соль и т. д.). Наличие на поверхности изолятора сухого осадка практически не оказывает влияния на его разрядные характеристики. Увлажненное загрязняющее вещество образует электролит, который под действием приложенного к изолятору напряжения приводит к увеличению тока утечки по его поверхности с последующим возможным перекрытием изолятора.

Для повышения надежности работы изоляции в условиях загрязнений необходимы следующие мероприятия:

усиление изоляции путем введения в гирлянды дополнительных элементов, а также использование грязестойких изоляторов;

протирка изоляции тряпками, смоченными в воде или растворителе;

обмывка изоляторов под напряжением струей воды;

применение гидрофобных покрытий, противодействующих возникновению дорожек, проводящих ток при увлажненной поверхности.

С точки зрения применения изоляционных материалов изоляторы делятся:

на композитные (применение нескольких полимерных материалов);

цельные (применен один полимерный материал);

традиционные (фарфор, стекло) с полимерным покрытием;

традиционные с дополнительными полимерными элементами или ребрами.

В отечественной электроэнергетике наибольшее применение получили композитные изоляторы, содержащие изоляционное тело из высокопрочного армированного стеклоровингом эпоксидного компаунда, металлической арматуры и защитной оболочки.

Осмотры и профилактические испытания изоляторов. При визуальных осмотрах основное внимание обращается на целостность изоляторов, отсутствие трещин и сколов, защищенность цементных швов от влаги, окраску арматуры и отсутствие подтеков ржавчины по поверхности изоляторов.

44
{"b":"246710","o":1}