В течение второго года максимальные и минимальные значения кривых заказов отличаются от среднего темпа продаж на величину, приведенную в табл. 13-3.
Таблица 13-3. Максимальные и минимальные темпы размещения заказов при 10-процентных сезонных колебаниях в розничных продажах
Подразделение системы
Максимум. %
Минимум, %
Розничная торговля
+10
— 10
Оптовая торговля
+22
— 20
Склад готовой продукции завода
+48
— 38
Завод
+80
— 65
Из этой таблицы видно, что при переходе к каждому последующему подразделению системы максимальное и минимальное отклонения от среднего темпа размещения заказов почти удваиваются. Несимметричность верхней (восходящей) и нижней (нисходящей) ветвей кривых порождается нелинейностью системы (которая относительно невелика).
Следует обратить внимание на то, что колебания фактических запасов значительны, они изменяются в пределах от 45 % ниже до 62 % выше нормы; при этом запасы велики в тот период, когда заказов мало. Это существенно с точки зрения оказания влияния на среднюю возможность выполнения заказов производством и вызывает колебания среднего запаздывания выполнения заказов от 1,5 до 3 недель. Это изменение «длины» канала, который связывает оптовые базы с производством, служит еще одним источником усиления отклонений, который не был четко выделен на предшествующем рисунке. Это изменение запаздывания влияет на изменение объема заказов в производстве еще больше, чем это можно было бы объяснить увеличением на 22 % заказов от оптовых баз. Объем невыполненных заказов в производственном звене возрастает до 113 % выше и падает затем до 53 % ниже нормального.
13.7.3. Случайные колебания розничных продаж
Из описанных выше реакций на скачкообразное и сезонное изменения вводов следует, что данной системе присуща тенденция к колебаниям. Как показывает реакция на ввод, представляющий собой ежегодные синусоидальные колебания продаж, системе свойственна тенденция усиливать возмущения определенных частот.
Приведенные выше «чистые» типы вводов, служащих для испытания системы, не относятся к тем их видам, с которыми приходится сталкиваться в реальных ситуациях. В действительности все решения в системе будут искажены возмущениями, вызванными погодой, отпусками, длиной рабочей недели, связанной с праздничными днями, и т. д. Было бы нереалистичным игнорировать эти возмущения при изучении поведения системы. Но обычно мы не имеем необходимых данных для воссоздания
этих отдельных небольших возмущающих эффектов. Множество возмущающих факторов может быть приближенно заменено введением помех (то есть случайных колебаний). Тогда окажется возможным рассмотреть, каким образом будет реагировать на них система, и проследить, как влияет изменение источников таких возмущений. Сейчас нам будет достаточно выяснить, как приведенная в этом примере система будет функционировать, если розничные продажи остаются постоянными на протяжении каждой отдельной недели, а для отражения в модели случайных колебаний вокруг среднего уровня продаж данные, относящиеся к следующим одна за другой неделям, будут отличаться друг от друга. Это может быть выполнено с помощью следующих уравнений:
RRR.KL=RRI+RCR.K,
13–78, R
RCR.K=SAMPLE (NSN.K, 1),
13–79, А
NSN.K=NORMRN (0, 100),
13–80, А
где
RRR — требования (заказы), получаемые розничным звеном (единицы в неделю);
RRI — исходный темп требований к розничному звену, константа (единицы в неделю);
RCR — изменение требований к розничному звену (единицы в неделю);
SAMPLE — функциональное обозначение, указывающее, что значение переменной NSN должно быть принято постоянным для данного интервала (1 неделя) и что значения ее должны заново определяться и использоваться для каждого следующего интервала времени;
NSN — источник нормального шума, последовательность случайных чисел, имеющих размерность «единицы в неделю». Для каждого интервала решений DT будет вырабатываться новое значение;
NORMRN — функциональное обозначение псевдослучайного (то есть вырабатываемого с помощью некоторой процедуры вычислений) источника нормальных случайных помех, оцениваемых в единицах в неделю. В скобках указано основное значение (0)и нормальное отклонение (100 единиц в неделю).
Все уравнения и параметры, кроме описанных выше, берутся из раздела 13.5.
Из приведенных на рис. 13–20 кривых можно видеть, каким образом производственно-сбытовая система видоизменяет такой независимый ввод, как розничные продажи, преобразовывая его при определенных обстоятельствах в производство продукции. Высокочастотные еженедельные колебания подавляются до тех пор, пока не перестают оказывать явного влияния на условия производства. Однако при этом усиливаются колебания с большим периодом в производственном подразделении системы. Они, несомненно, порождаются случайностями розничной торговли, хотя эта зависимость в явной форме не проявляется.
Рис. 13–20. Влияние случайных отклонений розничных продаж.
Можно показать, что последовательность случайных помех содержит в себе компоненты самых различных частот. Поэтому модель еженедельных случайных продаж в рознице будет обязательно включать в себя месячные, квартальные, годовые и любые другие периодически повторяющиеся отклонения. Если система, находящаяся в этих условиях, действует избирательно и имеет тенденцию усиливать колебания определенных частот, эти отдельные частоты будут видны как явно преобладающие. Это заметно на рис. 13–20, где преобладающие частоты создают максимумы, разделенные интервалами от 30 до 50 недель. Это величина того же порядка, что и естественная частота в 38 недель между максимумами на рис. 13–18.
Эта тенденция системы усиливать возмущения некоторых частот объясняется природой ее структуры, запаздываниями и правилами, которые определяют решения в системе. Позднее мы снова вернемся к этому вопросу, чтобы проследить за тем, как изменение руководящих правил может сделать систему менее чувствительной к случайным возмущениям.
Заказы, размещенные с целью регулирования запаса товаров и заполнения каналов, определяются для всех подразделений системы средней величиной продаж, которая вычисляется в данном случае с помощью показательной функции с 8-недельной временной константой.
Усредненные розничные продажи на приведенном рисунке не показаны; анализ полученных на вычислительной машине данных показывает, что они, как правило, отличаются от исходной величины для установившихся условий не более чем на 2–3 % и лишь изредка это отклонение превышает 5 %. Как усреднения, так и запаздывания способствуют погашению еженедельных возмущений на вводе системы, имеющих большую частоту, но не затрагивают компоненты с низкой частотой, к которым система наиболее чувствительна.
13.7.4. Предельная производственная мощность
Уравнения для производственно-сбытовой системы, приведенные в разделе 13.5, включают в себя в нескольких местах произведения и отношения переменных; следовательно, они отображают нелинейную систему; однако степень нелинейности этой системы невелика.