Сила воздействия функций решения. Динамическое поведение информационной системы с обратной связью определяется тем, каким образом изменения в одной переменной приводят к изменениям в другой. Анализ этого вопроса может привести к предположению о высокой чувствительности системы к точности параметров[47] в функциях решений, однако обычно это не так.
Если модель сконструирована правильно и она выражает действительную структуру социальной системы с обратной связью, то она будет обладать такой же способностью самокорректировки, как в реальных жизненных ситуациях. В предлагаемой формулировке модели все параметры, которые должны быть определены для функций решения, испытывают такое воздействие величин уровней, которое приводит к установлению темпов потоков, предусмотренных решениями. Эти уровни в свою очередь корректируются ответными решениями. Неточный параметр функции решения может потребовать соответствующей корректировки уровней в модели, пока не будет достигнуто правильное соотношение темпов потоков. Приведем некоторые примеры для иллюстрации этой внутренней корректировки. При определении параметра, характеризующего запаздывание в погашении счетов дебиторов, можно избрать слишком большую величину; это приведет к тому, что уровень счетов дебиторов слегка возрастет, но темп погашения будет все же связан с тем темпом, в котором берутся новые обязательства. Принятие в модели слишком низкого уровня спроса покупателей на автомобили приведет к снижению их товарного запаса и к постепенному сокращению автомобильных перевозок до тех пор, пока уровень спроса на автомобили не повысится. Изменение в уровне запаса готовых автомобилей поможет уравновесить функцию решения неточного уровня покупок; при этом динамика изменения темпа покупок в количественном отношении останется правильной, если иметь в виду другие переменные величины модели.
Мы должны больше беспокоиться о том, что говорит модель относительно факторов, которые вызовут изменения в темпах и уровнях, чем о точности в определении средней величины темпов и уровней.
Если модель правильно сконструирована, то, как это ни удивительно на нее часто не. оказывают влияния изменения, которые могут иметь место в большинстве параметров — иногда даже изменения в каждом из них. Чувствительность к избранным величинам параметров в модели должна быть не больше, чем чувствительность реальной системы к соответствующим факторам. Представляется очёвидным, что наша действительная промышленно-экономическая активность не должна быть слишком чувствительной к основным параметрам этой активности и что эти параметры изменяются не быстро. Это должно быть так, потому что важнейшие характеристики наших организаций остаются неизменными в течение длительного времени. Процветающая фирма стремится остаться такой на длительный период. Успех ее основывается на ее структуре и политике (включая важнейшие аспекты руководства). Национальная экономика США продемонстрировала удивительно подобные повторяющиеся экономические циклы на протяжении своей истории, несмотря на значительные изменения в технологии, в структуре денежного обращения, в быстроте коммуникаций и транспортировки, в соотношении значения промышленности и сельского хозяйства и в активности правительства.
Нелинейные функции решения. Нелинейные модели упоминались в разделе 3.1. Нелинейность модели проявляется в функциях решений, регулирующих темпы потоков. Линейная зависимость — это такая зависимость, в которой вводимые факторы комбинируются путем простого сложения или вычитания для определения результата. Предположим, что темп R зависит от переменных факторов X, У и Z, как, например, в следующей линейной функции:
Здесь переменные X, Y и Z оказывают воздействие на R каждая в отдельности. В частности, переменные Y и Z не определяют влияния переменной X на результат R. Далее, любое влияние на R пропорционально соответствующей переменной ввода, независимо от абсолютной величины, которую она может иметь. Линейные решения недостаточны для описания тех зависимостей, с которыми нам приходится иметь здесь дело.
Напротив, нелинейная функция решения может принимать самые разнообразные формы, как в следующем примере:
Здесь мы видим два источника нелинейности. В отношении члена аХ2 надо заметить, что он отражается на результате (R) не пропорционально изменениям X. При изменении X от 0 до 1 результат увеличивается на величину а; с изменением X от 1 до 2 он возрастает на утроенную величину а. В члене b(Y)(Z) влияние Y и Z зависит от величины каждого из них. Чем больше Z, тем значительней эффект от данного изменения Y; если один из них равен 0, то влияние другого тоже равно 0 независимо от его величины.
Для правильного описания поведения фирмы существенное значение имеют нелинейности этих двух типов. Поясним это примерами. Первая форма нелинейности имела место, когда влияние фактора, воздействующего на решение, не было просто пропорционально этому фактору. Например, имеющийся в наличии запас товаров для продажи воздействует на темп поставки товаров. Если запасы низки, то недостаток товаров ограничивает возможности поставки; в пределах «нормальных» запасов товаро-материальных ценностей изменения этих запасов окажут очень незначительное влияние на уровень поставки. Можно предположить, что большинство факторов, вводимых в функции решения, будут нелинейными и их влияние будет увеличиваться или уменьшаться с изменением пределов переменных.
Второй источник нелинейности в функциях решения возникает тогда, когда решение зависит не порознь от двух или большего числа вводимых переменных, а является результатом произведения или иной взаимозависимости этих переменных. В предшествующем примере поставка товаров не является независимым и изолированным ответом на запасы товаров и на объем полученных, но невыполненных заказов на эти товары. Мы не можем просто сложить эти две изолированные величины. Если нет заказов, то размеры запасов не имеют значения и не предопределяют поставку; если нет запасов, за счет которых может быть произведена поставка, то заказы не вызовут поставку.
Эти два вида нелинейности часто встречаются вместе. Рассмотрим зависимость темпов производства от имеющегося уровня- численности рабочих и необходимого для производства оборудования. На рис. 9–5 показано, как темп производства может повышаться с увеличением численности работающих на предприятии. Сначала, когда каждый вновь нанятый рабочий может воспользоваться любым необходимым оборудованием, производительность человеко-часа высока и кривая всего производства, круто поднимается вверх. После того, как достигается максимальная производительность оборудования, увеличение выпуска продукции на каждого рабочего снижается. Дальнейший рост числа работающих в конце концов приводит к максимально возможному темпу производства при данном оборудовании. Если и дальше увеличивать число рабочих, то это вызовет простои, беспорядок и потерю в темпе производства. Мы видим, что при данном количестве оборудования темп производства не пропорционален численности рабочих и представляет собой нелинейную функцию. Так как влияние любого данного изменения численности рабочих на темп производства зависит от количества оборудования, то эти два ввода воздействуют друг на друга. При недостаточном числе рабочих колебание количества оборудования от К до 2К не имеет значения. При большем числе рабочих влияние дополнительной рабочей силы все больше и больше зависит от того, будет ли введено дополнительное оборудование.