Литмир - Электронная Библиотека
A
A

Вскоре образовался оборонительный условный рефлекс. Привыкнув каждый раз получать удар током, дельфин вздрагивал от любого звука, сердце сбивалось с ритма, уже не дожидаясь самого удара. Не возникало сомнений, что животные слышали звуки.

Просидев не один день возле ванны с дельфином, исследователи пришли к выводу, что звуковые волны добираются до среднего уха двумя путями – по каналу нижней челюсти и из района ушных отверстий. Для звуков до 30 кГц более удобным является обычный звуковой путь – наружные слуховые проходы. Высокие звуки предпочитают нижнюю челюсть.

Неравноценность пути для звуков разной частоты объясняется физическими особенностями звукопроведения на каждой из акустических тропинок.

Святая святых

Скорость и надежность движения зависит от состояния дорог. Другое дело – звук. Для его «транспортировки» не нужно иметь специальных звукопроводов с гладким, без ухабов и твердым покрытием. Ведь звуковые волны распространяются не на колесных тарантасах. Чем более упругими свойствами обладает среда, тем больше их скорость и тем меньше теряется энергии. Звуки вполне могут обходиться без специально созданных дорог, но зато им могут понадобиться двери, чтобы переходить из одного помещения в другое. На границе двух сред потери энергии громадны. Лишь часть энергии звуковых волн проникнет в новую среду, другая, не редко более значительная, может отразиться от ее поверхности. Вот почему наружное ухо наземных животных представляет собой воронку, заполненную воздухом. По воздушному конусу звуковая волна добирается до первого звена звуковоспринимающей системы – до барабанной перепонки. Многие ткани головы тоже отлично проводят звук. Воздушный волновод, ведущий к среднему уху, необходим лишь потому, что переход звуковых волн из воздуха в кожу затруднен. Иное дело – водные животные. Кожа и жир дельфинов по акустическим характеристикам близки к характеристикам воды.

Поэтому переход звуковых волн из воды в ткани головы происходит без значительных потерь. Жир акустически прозрачен.

Наружное ухо и специальный канал – волновод, являющийся дорогой для звука, дельфину не только не нужны, но даже могли бы ухудшить восприятие звуков. Изменения в первом звене звуковоспринимающего аппарата возникли при переселении предков дельфинов в воду, как того требовали новые условия существования.

У всех позвоночных животных звуковоспринимающие клетки надежно спрятаны в специальном образовании, названном лабиринтом. У млекопитающих он находится в глубине височной кости. Костная часть лабиринта состоит из трех соединенных между собой полукружных каналов, спирального канала улитки, делающего два с половиной оборота, и нескольких вздутий. Внутри находится святая святых слухового аппарата – перепончатый лабиринт. Он и является внутренним ухом и органом равновесия. Здесь колебания давления перекодируются в вереницы биоэлектрических импульсов, направляющихся в мозг по самому короткому нервному пути – по слуховому нерву.

Внутренний закрученный канал улитки разделяют две перегородки, протянувшиеся вдоль него, на три самостоятельных канала, заполненных жидкостью разного характера.

Одна из перегородок, названная основной мембраной, у входа в улитку плотна и узка, шириной всего 0,04 мм, а ближе к вершине становится эластичнее и в 10–12 раз шире. На ней лежит самая важная часть слухового аппарата – орган Корти.

Он включает несколько слоев чувствительных волосковых клеток. Кортиев орган следит за быстрыми, очень незначительными колебаниями давления. Сжатия среды и последующие мгновенные падения давления, возникающие в рупоре нашего наружного уха, воздействуют на барабанную перепонку. Ее колебания через цепь слуховых косточек передаются на овальное окно лабиринта, а следовательно, и на лабиринтную жидкость. Движение жидкости вызывает в основной мембране бегущую волну. По мере продвижения вдоль мембраны амплитуда волны увеличивается и, достигнув максимума, начинает быстро затухать. Чем ниже звук, вызвавший колебание мембраны, тем ближе к вершине улитки добежит волна.

Напротив, при высоких звуках волна пробежит небольшое расстояние и, достигнув максимума, быстро затухнет. Движения мембраны вызывают наклон волосков чувствительных клеток. Действуя как микрорычаги, волоски возбуждают собственную клетку, и она отвечает биоэлектрическими импульсами. Слуховая клетка возбуждается, когда колебания барабанной перепонки достигают в размахе 0,0000000006 мм. Это в полтора раза меньше диаметра самого крохотного атома – атома водорода.

Людям, далеким от изучения сенсорных систем, вряд ли пришло бы в голову искать у дельфинов какие-то новые, необычные приспособления для восприятия звука, заменяющие кортиев орган, а ученые заняты этими поисками всерьез. Отсутствие у китообразных наружного уха опорочило в глазах ученых всю слуховую систему дельфинов. Потребовались специальные исследования для реабилитации среднего и внутреннего уха животных. Ученые рассуждали так: если слуховой аппарат дельфинов претерпел упрощение, можно будет считать, что его функции ухудшились и он потерял прежнее значение. Напротив, если бы удалось обнаружить изменения прогрессивного характера, появление специальных приспособлений к восприятию звука в воде можно утверждать, что его функция по-прежнему находится на высоте. В этом смысле хорошим критерием оказалась приспособленность слуховой системы для анализа пространственной локализации источников звука. Слуховая система наземных млекопитающих к работе под водой не приспособлена, в чем нетрудно убедиться каждому, проведшему в подводном царстве Нептуна хотя бы около минуты. Под водой человек не в состоянии точно определить местоположение даже сильных источников звука. Эта операция осуществляется за счет совместной работы обоих наших ушей. Обычно звуковая волна сначала попадает в одно ухо, ближайшее к источнику звука, а немного позже добирается и до второго. Эта разница во времени и есть главный источник информации о местонахождении звука. Диаметр человеческой головы в среднем 18 см, окружность – 56–58 см.

Если в момент подхода звуковой волны человек стоит к ней боком, звук, обегая череп, чтобы достичь противоположного уха, должен покрыть расстояние в 28 см. Один сантиметр звуковая волна проходит за 30 мкс, а на весь путь потребуется 840 мкс. Кажется, очень немного, но мы замечаем и гораздо меньшую разницу. Когда источник звука находится всего лишь на 3° правее средней линии тела, звук до левого уха доберется с запозданием всего в 30 мкс. Мы способны оценить эту разницу и, оперируя ею, достаточно точно определить, откуда раздался звук.

К сожалению, этим способом можно определить местонахождение лишь низкочастотных источников звуков. Слуховой аппарат высчитывает не просто разницу во времени прихода звука, как такового, а разницу во времени прихода одинаковых фаз звуковой волны. Максимальное опоздание прихода звука ко второму уху может достигать 840 мкс. Поэтому нужно, чтобы время колебания звуковой волны (ее полный цикл от одного максимума давления до другого) было больше 840 мкс. При более высоких звуках, имеющих более короткие волны (и более короткий цикл), слуховые центры нашего мозга начинают путаться. Например, звуку с частотой 10000 Гц, идущему под углом 55°, чтобы обогнуть голову, нужно 450 мкс. Продолжительность цикла равна 100 мкс.

Следовательно, огибая голову, звуковая волна успеет сделать 4,5 цикла. Однако до слуховых центров мозга информация о 4 полных циклах звуковой волны просто не дойдет. Они будут оперировать разницей в 0,5 цикла и, естественно, не смогут правильно определить, где возник звук. Поэтому по времени прихода можно определить лишь местоположение звука с частотой до 1300 Гц.

Другим источником информации является интенсивность звука. При звуках низкой частоты длина звуковых волн не соизмеримо больше размера головы. При 100 Гц она равняется 3,3 м. Такая волна легко огибает голову. Другое дело, если волна маленькая. У звуков с частотой 10000 Гц длина волны всего 3,3 см. Такие звуки отражаются головой, и второе, более отдаленное ухо оказывается как бы в акустической «тени». Звук дойдет и до него, но дойдет значительно ослабленным. Если источник звука находится под углом 15°, то для звука с частотой 1000 Гц разница интенсивности составит 150%, а при частоте 15000 Гц – 900%. Уже для звуков с частотой 3000–4000 Гц разность интенсивности достаточно велика, чтобы с ее помощью определять, откуда они доносятся.

23
{"b":"24518","o":1}