Литмир - Электронная Библиотека
A
A

Уши, богато снабженные сосудами и благодаря достаточно редкому волосяному покрову, особенно с внутренней стороны, не имеющие надежной теплоизоляции, отдают путем радиации в первую очередь нёбу, а также окружающим предметам накапливающееся в организме тепло. Как-никак температура северного сектора неба над пустыней даже в полдень не бывает больше +13°. Радиационный[5] обмен позволяет легко освободиться от излишков тепла, а ушные раковины выполняют функцию излучателей. Вот, оказывается, почему уши бывают такими длинными.

Терморегуляция – только вспомогательная функция ушей.

Главная же, безусловно, слуховая. Ушные раковины – первый аппарат в длинной цепи приспособлений для улавливания звуковой волны и анализа принесенной ею информации.

У млекопитающих они имеют форму воронки. Такая воронка ловушка обеспечивает лучшее восприятие звуковых волн, идущих с определенного направления. У кошек, собак, лошадей, антилоп уши обладают большой подвижностью – они способны повернуться навстречу звуковой волне, навстречу источнику звука. Благодаря этому животным удается избавиться от помех и даже слабые далекие звуки расслышать лучше, чем близкие и громкие.

При тепловом излучении, способном возникать даже при низких температурах, излучаются невидимые лучи большой длины. Измерение радиации часто производят с помощью приборов, превращающих лучистую энергию в тепловую. Лучистая энергия, излучаемая северным сектором неба над пустыней, переведенная в тепловую, не превышает 13°С.

Ухо человека потеряло способность активно двигаться в поисках источника звука. Даже у человекообразных обезьян уши относительно неподвижны. Однако было бы неправильно думать, что они совершенно бесполезны и являются лишь весьма сомнительным украшением человеческой головы. Хотя пока не совсем ясно, насколько ушная раковина эффективна как воронка, собирающая энергию звуковой волны, ее участие в определении направления звука не вызывает сомнений.

В этом можно убедиться самому. Попробуйте резко изменить форму ушной раковины – смять ее рукой, и вы сразу почувствуете, что определять направление звуков, особенно слабых, становится труднее. Хрящевые бугорки внутри ушных раковин задерживают звук. Величина этой задержки меняется в зависимости от того, с какой стороны он приходит. Мозг использует эту задержку, чтобы повысить точность локализации источника звука.

Наружное ухо выполняет и еще одну задачу – усиливает звук. Оно представляет собой резонатор. Если частота звука близка к собственной частоте колебаний резонатора, давление воздуха в слуховом проходе, воздействующее на барабанную перепонку, становится больше давления пришедшей звуковой волны. Для развитой эхолокации необходим изощренный слух.

Казалось бы, все звенья слуховой системы китообразных должны быть развиты лучше, чем у прочих обитателей планеты. В общем, это так и есть, но самое первое звено – улавливающий рупор – полностью отсутствует. Бесполезно искать на гладкой лоснящейся коже дельфинов каких-нибудь, пусть самых скромных, остатков ушей. Их нет. Внимательно рассмотрев голову афалины, можно заметить с каждой стороны по крохотной дырочке диаметром в 1–2 мм. Как и все на голове дельфина, эти отверстия расположены несимметрично.

Одно отверстие находится ближе к носу, чем другое. Они являются началом слуховых проходов.

У хорошо слышащих наземных животных слуховой проход никогда не бывает столь узким. Почти сразу же за наружным отверстием он резко сужается и приобретает вид тонюсенькой щелки с просветом 360x36 мкм, а у дельфина белобочки – 330x32 мкм. Чуть дальше слуховой канал полностью зарастает, превращаясь в тонкий шнурочек. Когда шнурок минует толстый жировой слой и добирается до мышц, в нем снова появляется просвет, заполненный воздухом и даже более широкий, чем был вначале: у афалин – 2250x1305 мкм, а у белобочки – 1620x810 мкм. И все-таки трудно поверить, что это устройство имеет какое-то отношение к восприятию звуков.

Отсутствие слухового прохода связано с жизнью в океане.

Если бы он соединил барабанную перепонку с наружной средой, как это обычно бывает у наземных животных, дельфины подвергались бы постоянной опасности. При погружении на каждые 10 м давление возрастает примерно на 1 ат. Все млекопитающие имеют приспособление для выравнивания давления за барабанной перепонкой, но аквалангисты отлично знают, как ненадежно оно работает, выходя из строя при малейшей простуде или легком насморке. В этом случае при первой же попытке нырнуть барабанная перепонка была бы прорвана водой. Огромное наружное давление, не встречая изнутри равного сопротивления, без особого труда сокрушило бы тонкую преграду. Итак, среднее ухо дельфина укрыто кожей, толстым слоем жира и мышц и никак не соединяется с внешней средой.

Проведено немало исследований для обнаружения звуковода, позволяющего акустическим волнам добираться до звуковоспринимающих рецепторов. Но по сей день вопрос о его местоположении окончательно не решен и продолжает вызывать жгучие дискуссии.

Вход лабиринта

Одним из семи чудес света был критский дворец-лабиринт царя Миноса. Все известные дворцы-лабиринты знамениты тем, что попасть в них значительно легче, чем выбраться наружу. Голова дельфина – это двойной лабиринт: одинаково трудно отыскать и вход, и выход. Многие маститые физиологи не допускали и мысли, что звуковые волны способны, преодолев кожу и жир, добраться до среднего уха, спрятанного в специальную кость буллю, отгороженную слоями акустической изоляции – мышцами, сосудами и синусами с белково-воздушной эмульсией.

Поиски акустической двери начались лишь после обнаружения у дельфинов эхолокации. Нож анатома не нашел ничего, похожего на тропинку для звуковых волн. Пришлось вернуться к идее слуховых проходов и проверить экспериментально, могут ли звуки пользоваться этой тропинкой. Дельфину закрыли присосками ушные отверстия и выпустили в бассейн с мутной водой. Экспериментаторам казалось, что присоска должна явиться серьезным препятствием для звуковых волн, но поведение бедолаги-дельфина практически не изменилось. Исследователи не знали, что звуковые волны способны добираться до слухового прохода со стороны, проходя через кожу за пределами звукозадерживающих присосок.

Кожа и жир для них не преграда, и звуковым волнам не обязательно пользоваться начальными отделами звукового прохода. Для них важна лишь внутренняя, самая последняя его часть, как единственная щель в антиакустической преграде, окружающей среднее и внутреннее ухо.

Позже способность звука обходиться без специальных дверей была подвергнута экспериментальной проверке. Исследователи, осуществив сложнейшую операцию, сумели вживить электроды в структуры внутреннего уха. Регистрация электрических реакций позволила судить о том, добираются ли туда звуковые волны. Прикладывая небольшой звукоизлучатель к различным участкам кожи на голове дельфина, ученые убедились, что звуковым волнам нет нужды протискиваться сквозь узкое наружное отверстие слухового прохода.

Они способны проникать сквозь кожу и, путешествуя по жировой и другим тканям, в конце концов добираться до внутреннего уха. Правда, не все частоты одинаково хорошо проводятся сквозь жир и мышцы.

Затем стали нащупывать тропинку, специально предназначенную для звуков. Подозрение пало на нижнюю челюсть.

Длинные изящные кости нижней челюсти дельфинов имеют вблизи места своего соединения, которое по аналогии с человеком можно условно назвать подбородком, три-четыре небольших отверстия, ведущих во внутренний костный канал, заполненный жиром. Предполагают, что по этому волноводу звуки без труда добираются до сустава, которым нижняя челюсть соединена с черепом. А отсюда до среднего и внутреннего уха рукой подать. Нашли и последний отрезок тропинки.

Семьдесят с лишним лет назад немецкий анатом Г. Бенингхауз обнаружил жировой тяж, идущий от нижней челюсти непосредственно к булле. Теперь оставалось только проверить, будут ли слышать дельфины, если воспрепятствовать проникновению звука внутрь нижнечелюстных костей. Для звукоизоляции использовали полиэтиленовые мешочки, наполненные воздухом. Ими укутывали или нижнюю челюсть, или боковые части головы, и проверяли, слышат ли после этого дельфины. Каждый звук сопровождали ударом электрического тока. От неожиданности, от боли, а может быть, просто от обиды сердечный ритм у дельфина мгновенно нарушался.

вернуться

5

Радиация – излучение (лучеиспускание), отдача телом в пространство в виде электромагнитных волн заключенной в нем энергии.

22
{"b":"24518","o":1}