Литмир - Электронная Библиотека
Содержание  
A
A

Заметим, что S (i', i') = а[i'].

Мы собираемся пробежать строку S (1, …) вплоть до первого индекса i1 , для которого S становится отрицательным. Тогда мы начнем пробегать строку S (i1 + 1, …), и т. д.

Отсюда следует, что в каждый данный момент нужно знать максимальную подпоследовательность в уже пройденной части; эта подпоследовательность задается номером начала r, номером конца q и своей суммой m. С другой стороны, нужно знать наилучшую заключительную подпоследовательность S (k, i − 1), предполагая, что вектор пройден вплоть до поля i − 1. Обозначим через s значение суммы этой заключительной подпоследовательности. Пусть k — номер отроки, дающий этой сумме максимальное значение, а s — сумма всех членов, начиная с k.

Если сумма s положительна, то она и образует максимум на строке с номером k. При переходе к i число a[i] добавляется к s. Если s отрицательно, то новый элемент с номером i и становится оптимальной строчкой, и нужно взять s = а[i].

В этих двух случаях число s нужно сравнить с оптимумом m. Если s оказывается больше, то m нужно заменить на s. Попытаемся составить программу, исходя из того, что мы сейчас обсудим. Нужно уточнить предположение индукции.

Предположим, что вектор пройден от элемента 1 до элемента с номером i − 1 включительно. Мы знаем лучшую подпоследовательность в этой части: она идет от индекса r до индекса q включительно, и ее сумма равна m: m = S (r, q). С другой стороны, мы внаем наилучшую заключительную подпоследовательность, кончающуюся в i − 1, т. е. знаем такой индекс k, что сумма S (k, i − 1) максимальна среди заключительных подпоследовательностей, Значение суммы S (k, i − 1) равно s. Может случиться, что эта заключительная подпоследовательность является наилучшей возможной во всей пройденной части, и в этом случае имеем r = k, q = i − 1, s = m. В любом другом случае sm. Если i = n − 1, то весь вектор пройден и получен искомый результат r, q, m.

В противном случае нужно включить элемент a[i]. Если s отрицательно, то a[i] и образует (как единственный участник) наилучший заключительный отрезок; берем k = i, s = a[i]. В противном случае s ≥ 0 и сумма s + a[i] больше s и больше а[i], и это и есть сумма для наилучшего заключительного отрезка, который по-прежнему начинается с номера k. В этих двух случаях отрезок s становится наилучшим отрезком, если он оказывается больше m.

Для начала можно положиться на пробег вектора, начиная с его единственного первого элемента. В этот момент наилучший сегмент и наилучший заключительный сегмент — это одно и то же.

<i>d</i> := 1; <i>f</i> := 1; <i>m</i> := <i>a</i>[1]; <i>s</i> := <i>m</i>; <i>i</i> := 2

ПОКА <i>i</i> ≤ <i>n</i> ВЫПОЛНЯТЬ

  ЕСЛИ <i>s</i> &lt; 0 ТО <i>k</i> := <i>i</i>; <i>s</i> := <i>a</i>[<i>i</i>]

    ИНАЧЕ <i>s</i> := <i>s</i> + <i>a</i>[<i>i</i>]

  КОНЕЦ_ЕСЛИ

  ЕСЛИ <i>s</i> &gt; <i>m</i> ТО <i>d</i> := <i>k</i>; <i>f</i> := <i>i</i>; <i>m</i> := <i>s</i>

  КОНЕЦ_ЕСЛИ

  <i>i</i> := <i>i</i> + 1

ВЕРНУТЬСЯ

Эта программа осуществляет пробег вектора a один-единственный раз, что и было предписано в условии. Это очень просто, но это совершенно не очевидно.

Список литературы

Произведения, цитируемые в тексте

[ARS] Arsac J., Les bases de la programmation, Paris, Dunod, 1983.

[BAI] Baillif J.-C. Les casse — tète logiques de Baillif, Paris, Dunod, 1979.

[BAL] Ball W.-W. Rouse, Mathematical recreations and essays, Macmillan and C°, London, 1963.

[BER] Berloquin P., Le jardin du sphynx, Paris, Dunod, 1981.

[ENG] Engel A., Mathématique élémentaire dʼun point de vue algorithmique, Paris, Cedic, 1979.

[GRI] Gries D., The science of programming, Springer Verlag, New York, 1981.

[KNU] Knuth D., The art of computer programming, Addison Wesley, 1969.

[KUEJ Kuenzi N.-J., Prielipp B. Cryptarithms and other arithmetical pastimes, School science and mathematics association, University of Wisconsin.

[LED] Ledgard H.-F., Proverbes de programmation, Paris, Dunod, 1978.

[PBBJ Berlioux P., Bizard Ph., Algorithmique, Paris, Dunod, 1983.

[POL] Pollard J.-M. A Monte Carlo method for factorization, BIT 15, (1975), p. 331—384.

[SIR] Siklossy L., Letʼs talk Lisp, Prentice Hall, Englewood Cliffs (N. Y.), 1976.

[SCH] Schwartz В. Mathematical solitaires and games, Baywood Publishing Company, 1978.

Для тех, кому нужно пополнить свое образование в программировании.

Arsac — Mondou О., Bourgeois — Camescasse, Gourtay M.

Premier livre de programmation (écriture de boucles de proggrammes).

Deuxiéme livre de programmation (procédures, fichiers).

Pour aller plus loin en programmation (récursivité, structures de donnees), Cedic — Nathan, Paris, 1982.

Taurisson A., Petitguillaume A.

A vous de jouer, Introduction à la science de lʼinformatique, Modulo Editeur, Outremont, Québec, Canada.

59
{"b":"243627","o":1}