Литмир - Электронная Библиотека
Содержание  
A
A

Головоломка 7.

Возьмем n = 3n' + 2. Тогда (2n − 1)/3 = 2n' + 1.

По общему правилу, непосредственно следующий за нечетным числом 2n' + 1 элемент равен (3(2n' + 1) + 1)/2 = 3n' + 2.

Если n дает n' при переходе (p, q), q > 1, т. е. если n имеет вид n = (2p(2qn' + 1)/3p) − 1, то

n'' = (n − 1)/2 = (2p−1(2qn' + 1)/Зp) − 1.

Как и следовало ожидать, это имеет в точности тот смысл, что если деление на Зp можно выполнить нацело, то в связи с этим возникает соотношение между (p, q) и n'.

Если n" увеличить на 1, а затем умножить на 3p−1/2p−1, то получится (2qn' + 1)/3.

Тогда нужно уменьшить результат на 1: получим (2qn' − 2)/3. Но это число делится на 2, так что с помощью перехода (p − 1, 1) число n" дает

(2q−1n' − 1)/3.

По общим правилам получаем

3 ((2q−1n' − 1)/3) + 1 = 2q−1n',

а затем n', что и доказывает наше утверждение.

Если вы примените это правило перехода к 4k + 1, то нужно добавить 1, что дает 4k + 2, делящееся на 2, но не на 4. Делим на 2 и умножаем на 3, что дает 6k + 3. Уменьшаем на 1 и затем делим на 2, и получается Зk + 1.

Если k нечетно, то это — элемент, следующий за k; так что за числом вида 4k + 1 с k нечетным следуют те же величины, что и за k.

Если k четно, то 4k + 1 дает 3k + 1.

Если существует цикл с единственным переходом p, q, т. е.

n = (2p(2qn + 1)/3p) − 1,

то это возможно только в случае, когда существует такая пара p, q, что число

p − 2p)/(2p+q − Зp)

— целое. Мы показали, что такой пары (p, q) нет.

Головоломка 10.

9*АВСДЕ + АВСДЕ = 10*АВСДЕ, что можно записать как АВСДЕ0. Отсюда получаем зашифрованное сложение:

FGHIJ + ABCDE = ABCDE0

Это показывает, что A = 1. Далее, J + E не может быть нулем, следовательно, J + Е = 10 и для I есть кое-что «в уме». Сумма F + A дает AB с A = 1, так что сумма F + 1, к которой, может быть, добавлено что-то «в уме», должна дать число, большее 9. Это может быть только в случаях 1 + 8 + 1 = 10, 9 + 1=10 или 1 + 9 + 1 = 11. Но, так как BA, то B = 0.

Тогда в сумме G + B рассмотрим цифру C как цифру единиц. Так как В = 0, то это означает, что для G «в уме» кое-что есть (потому что GС).

Отсюда получаем схему операции сложения:

Программирование игр и головоломок - f05.png

Запишем, что A + B + C + D + E + F + G + H + I + J = 45,

А = 1, B = 0.

Запишем пять операций сложения с учетом переносов в старший разряд:

J + E = 10,

1 + I + D = 10k + E,

k + H + C = 10 + D,

1 + G + В = 10k' + С,

k' + F + A = 10.

Сложим их все. Вам остается

C + D + E = 17 − 9(k + k').

Но С + D + E не может быть меньше, чем 2 + 3 + 4 = 9, и не может быть больше, чем 6 + 7 + 9 (если F = 8 и k' = 1). Не может быть, чтобы у вас одновременно выполнялись соотношения k = k' = 1 (что давало бы отрицательную сумму С + D + E). Но не может быть и равенства k + k' = 1, так как тогда было бы С + D + E = 17 − 9 = 8, что слишком мало. Следовательно, k = k' = 0. Составим окончательную систему

J + E = 10,

I + D + 1 = E,

H + C = 10 + D,

G + 1 = С,

F = 9.

Закончите вы с помощью программы.

Головоломка 11.

Обозначим через ai цифры исходного числа, bi — цифры результата, ki — цифры «в уме»:

3ai + ki = bi + 10ki+1.

Сумма всех ai равна 45, как и сумма всех bi. Обозначим через K сумму всех ki:

3*45 + K = 45 + 10*K дает К = 10.

Мы знаем, что дает «в уме» каждая цифра:

1 дает 0, 2 дает 0, 3 дает 0 или 1 в зависимости от того, что хранится «в уме» над 3.

4 дает 1, 5 дает 1, 6 дает 1, потому что не может случиться 3*6 + 2, что давало бы «в уме» 2, но цифру единиц 0;

7, 8 и 9 дают 2.

Для того, чтобы сумма величин «в уме» была равна 10, нужно, чтобы 3 давало 1 «в уме». Так как 3*3 + 1 (с цифрой единиц, равной 0) случиться не может, то нужно, чтобы «в уме» над 3 было 2. Следовательно, 3 стоит слева от 7, 8 или 9. В частности, 3 не может стоять на правом конце.

Остальное просто, если вы будете следовать методу, указанному в разделе «Условия». Вот таблица:

Программирование игр и головоломок - f06.png

Потребуем, чтобы 9 было справа; следовательно, вычеркнем 9 из этой таблицы, оставив его только в столбце, соответствующей тому, что «в уме» 0. Цифра 3 требует 2 «в уме», чтобы дать 1. Вычеркнем остальные 3 в таблице. Цифра 9 не может быть получена иначе как с помощью 6 и 1 «в уме». Другие 6 вычеркиваем. Цифра 8 получается из 2 при 2 «в уме». Нужно взять 3 числа в первом столбце, так что нужно еще одно не равное ни 2, ни 3. Их нужно 4 в среднем столбце, так что нужно еще 3 числа, ре равных 6, которые нужно взять среди цифр 7, 4, 1, 8, 5. Два последних числа должны быть взяты из столбца с нулем «в уме». Когда эти числа среди всех возможных будут выбраны, останется расположить их в соответствии с тем, что должно быть для них «в уме». Эту программу сделать легко.

Головоломка 12.

Если число a1a2ap (представленное как последовательность цифр) кратно 3, то и a1 + а2 + … + ap кратно 3. Сумма кубов цифр равна

a13 + а23 + … + ap3.

Нужно показать, что это число также кратно 3. Действуйте по индукции по числу слагаемых. Предположим, что для p = n − 1 членов

a13 + а23 + … + ap3 = (a1 + … + ap)3 по модулю 3; тогда равенство

(a1 + … + ap + an)3 = (a1 + … + ap)3 + an3 + 3 (…)

доказывает наше утверждение для n слагаемых.

Возьмите число с k цифрами. Сумма кубов его цифр ограничена величиной k*93. Но исходное число не может быть меньше, чем 10k−1. Следовательно, достаточно, чтобы 10k−1 было больше, чем k*729, что очевидным образом выполняется при k = 5. Но эта оценка слишком пессимистична.

Головоломка 14.

Число, полученное при обращении порядка цифр, равно

1000d + 100c + 10b + a,

49
{"b":"243627","o":1}