«В настоящее время, видимо, еще невозможно в полной мере оценить все значение научных идей и технических предложений Константина Эдуардовича Циолковского, особенно в области проникновения в межпланетное пространство».
Мне посчастливилось однажды достать на несколько дней и прочесть три десятка тех самых, ставших теперь такой большой библиографической редкостью, книжек, которые Циолковский издавал в Калуге на собственные скудные учительские деньги. Книжки эти очень разные: фантазии и расчеты, рассуждения и чертежи. Есть среди них такие, которые навсегда вошли в историю мировой науки. Есть и такие, которые читаются с улыбкой: прошедшие десятилетия много изменили и в мире техники, и в мире общественно-политических идей. Но вне зависимости от форм изложения и тематики во всех этих книжках повсюду блестят самородки гениальных, фантастически точных предвидений. Я сделал тогда выписки, еще не зная, что буду писать эту книгу, просто так, для себя, и, конечно, далеко не все, нужное мне сейчас, выписал, но даже этого, думаю, хватит, чтобы вы все поняли…
Возьмем науку об атомном строении вещества – фундамент современной физики, краеугольный камень материалистической философии, первую главу истории множества наук. Повторяя (возможно, и не зная этого) ленинскую мысль о неисчерпаемости атома, Циолковский замечает: «Плотный и неделимый атом Лукреция и Лавуазье оказался мифом. Наверно, и элемент атома – электрон окажется таким же мифом». Через несколько лет уже более точно: «Рассудок и история наук нам говорят, что наш атом так же сложен, как планета или Солнце». Еще через два года: «Атом есть целая вселенная, и он так же сложен, как космос».
Еще не существовали сколь-нибудь убедительные работы о ядерных реакциях во Вселенной, когда Циолковский писал о том, что «причина сияния небесных тел заключается, вероятно, и в работе тяготения и в химической энергии». В 1912 году, независимо от француза Эсно-Пельтри, он говорит о радиоактивном распаде как о возможном источнике энергии для звездолетов: «Думаю, что радий, разлагаясь непрерывно на более элементарную материю, выделяет из себя частицы разных масс, двигающиеся с поразительной, невообразимой скоростью, недалекой от скорости света… употребление его могло бы давать, при одинаковых прочих условиях, такую скорость реактивного прибора, при которой достижение ближайшего солнца (звезды) сократится до 10-40 лет».
Книги К. Э. Циолковского, изданные ученым в Калуге на свои скудные учительские деньги. Разнообразна их тематика и манера изложения, но во всех этих книгах сверкают самородки гениальных, фантастически точных предвидений, касается ли это атомного строения вещества, предпосылок для создания лазеров, развития зародыша в искусственной среде и особенно проблем освоения космического пространства и перспектив развития ракетостроения.
Циолковский считал, что образования вокруг звезд планетных систем не нечто невероятное и редчайшее, а закономерный этап эволюционных процессов Вселенной. Потребовались многие годы, прежде чем это предположение получило подтверждение в недавних наблюдениях, и у Циолковского появились последователи и единомышленники среди серьезных астрономов.
С треском разламывались на глазах людей легкие, похожие на этажерки самолетики, а Циолковский писал: «Аэроплан будет самым безопасным способом передвижения». Еще никто не слышал фамилий Громова и Чкалова, впереди все великие перелеты XX века, огромные резервы для совершенствования таит в себе бензиновый авиационный мотор, а Циолковский предрекает: «За эрой аэропланов винтовых должна следовать эра аэропланов реактивных, или аэропланов стратосферы».
В работах только одного 1925 года нашел я такие непомерно далекие друг от друга откровения: солнечный парус для межпланетного корабля – эта серьезная инженерная проблема активно обсуждается в наши дни; ядерный ракетный двигатель – он уже существует в опытных экземплярах; внеутробное развитие зародыша в искусственной среде – об этих работах итальянца Петруччи как о сенсации писали газеты в 60-х годах. Словно догадываясь о будущем открытии лазера, Циолковский ставил инженерную задачу сегодняшнего дня: создать космическую связь с помощью «параллельного пучка электромагнитных лучей с небольшой длиной волны, электрических или даже световых…»Не существовало ни одной счетно-решающей машины, и газеты не писали о математизации всего народного хозяйства, да и потребности тех лет не взывали еще к спасительному могуществу числовых абстракций, а Циолковский предсказывал: «…математика проникнет во все области знания». Сам он овладел высшей математикой самостоятельно (как, впрочем, всеми другими знаниями). По словам Константина Эдуардовича, как раз космонавтика и побудила его заняться высшей математикой.«…Только с момента применения реактивных приборов начнется новая великая эра в астрономии – эпоха более пристального изучения неба». – читаю у Циолковского и вспоминаю беседу с профессором Дмитрием Яковлевичем Мартыновым, директором Астрономического института имени П. К. Штернберга.
– Астрономия превращается в науку опытную, – говорил профессор. – Успехи космонавтики позволяют нам сегодня реально представить себе развитие принципиально новой отрасли науки – внеземной астрономии…
В 1958 году сотрудники Физического института Академии наук СССР им. П. Н. Лебедева впервые в мире провели опыт по исследованию инфракрасного – теплового – излучения Земли как планеты. Ракета подняла аппаратуру на высоту 500 километров, поскольку особенности инфракрасного излучения не позволяли вести широкие наблюдения не только с Земли, но даже с самолетов и аэростатов. Наиболее благоприятные условия для таких наблюдений – на высоте 200-400 километров – это высоты космонавтики. Инфракрасный портрет Земли нужен метеорологам. Космическая ИК-аппаратура позволяет им изучать пространственное изображение облаков, перемещение снежного и ледовитого покрова. Кроме того, исследования в инфракрасном диапазоне позволяют обнаружить в верхней атмосфере аэрозоли, углекислый и угарный газы, метан, кислород и судить о степени ее загрязнения, что является еще одним вкладом космонавтики в благородное дело охраны окружающей среды.
Вскоре выяснилось, что именно в инфракрасном диапазоне интенсивно «работают» ядра галактик, квазары, нестационарные галактики, квазизвездные источники – короче, объекты, к которым у астрономов накопилось особенно много вопросов, касающихся их строения, состава, механизмов энергетических превращений. В этом же диапазоне можно наблюдать скопления межзвездного газа и определять его химический состав.
Космическая инфракрасная астрономия может определить микроструктуру поверхностного слоя Луны, состав облаков Венеры или внешних слоев Юпитера. Обо всем этом можно было бы отдельную книжку написать, а ведь инфракрасная астрономия вовсе не единственная область новой астрономии космической эры.
Мне вспоминается холодный бесснежный январь 1975 года, Центр управления космическими полетами в Крыму – там я писал репортажи о полете орбитальной станции «Салют-4». Тогда на ней работали давние мои друзья – космонавты Алексей Александрович Губарев и Георгий Михайлович Гречко. У них был комплекс астрономических приборов под названием «Филин», что позволяло журналистам всласть наиграться различными сравнениями и ассоциациями. «Филин» разглядывал Вселенную глазами, которые видели рентгеновское излучение. Это была совершенно новаторская работа: рентгеновская астрономия переживала свое детство. В ту пору было открыто всего около 160 космических рентгеновских объектов, большинство из которых было трудно отождествить с видимыми звездами. Но именно здесь приоткрывались завесы тайн над, пожалуй, самыми удивительными феноменами природы – нейтронными звездами, звездами с радиусом до 10 километров, каждый кубический сантиметр вещества которых весит 100 миллионов тонн!