Литмир - Электронная Библиотека
Содержание  
A
A

Что касается конденсатора, то он обычно представляет собой две пластинки, расположенные очень близко друг напротив друга, но разделенные диэлектриком, то есть веществом, не пропускающим электрический ток. Пластинки конденсатора называются его обкладками. Если подключить обкладки конденсатора к полюсам источника постоянного тока (например, к электрической батарее), то на них будет накапливаться электрический заряд, который сохранится и после того, как батарея будет отключена. Способность конденсатора накапливать заряд определяется его электроемкостью. Каждый конденсатор имеет свою электроемкость, причем величина ее зависит от площади пластин, от расстояния между ними и от свойств диэлектрика, их разделяющего. Если обкладки конденсатора соединить кусочком проволоки, то произойдет его быстрая разрядка — электроны с той пластины, где они находились в избытке, перетекут на другую, где их не хватало, после чего заряд каждой из обкладок будет равен нулю.

Ну а если конденсатор разряжать не сам на себя, а через индукционную катушку? В этом случае наблюдается очень интересное явление. Представим себе заряженный конденсатор, к обкладкам которого присоединили катушку. Очевидно, конденсатор начнет разряжаться, и в цепи появится электрический ток, однако сила его не достигнет сразу максимального значения, а будет увеличиваться постепенно вследствие явления самоиндукции в катушке. В тот момент, когда конденсатор полностью разрядится, сила тока в катушке достигнет максимальной величины. Что же получится? Несмотря на то что обе пластины конденсатора уже будут иметь нулевой заряд, протекание тока через катушку продолжится, поскольку вследствие той же самоиндукции ток в катушке не может прекратиться мгновенно. Катушка словно превратится на несколько мгновений в источник тока и будет заряжать конденсатор точно так же, как это делала электрическая батарея. Только теперь заряды пластин меняются местами — та, которая, до этого была отрицательно заряженной, становится положительной, и наоборот. В результате, когда ток в катушке будет равен нулю, конденсатор окажется снова заряженным. Он, впрочем, в то же мгновение опять начнет разряжаться через катушку, и весь процесс повторится в обратном направлении. Если бы не было неизбежных потерь электроэнергии, такая перезарядка могла бы происходить сколь угодно долго.

Описанное явление называют электрическими колебаниями, а систему конденсатор — катушка, в которой происходят эти колебания, — колебательным контуром. В зависимости от того, сколько раз за одну секунду конденсатор успеет перезарядиться, говорят о той или иной частоте колебаний. Частота колебаний напрямую связана со свойствами колебательного контура, прежде всего, индуктивностью катушки и емкостью конденсатора. Замечено, что чем меньше эти величины, тем больше частота колебаний в контуре, то есть конденсатор успевает большее число раз перезарядиться за одну секунду.

Как и любые колебания (например, колебания маятника), колебания в системе конденсатор — катушка, если их не поддерживать извне, со временем прекратятся, так как первоначальная энергия будет расходоваться на нагрев проводов и электромагнитное излучение. Это означает, что с каждым колебанием максимальная величина тока в катушке и максимальное напряжение на обкладках конденсатора будут все меньше и меньше. Однако точно так же, как колебание маятника в механических часах, электрические колебания можно поддерживать, если, к примеру, подключить конденсатор к внешнему источнику переменного тока. Но переменный ток, как мы помним, тоже изменяет свою величину с определенной частотой, или, говоря другими словами, имеет собственную частоту колебаний. Любой колебательный контур не безразличен к тому, какую частоту колебания имеет питающий его ток. Если, к примеру, этот ток имеет слишком большую или слишком маленькую частоту колебания по сравнению с частотой колебания самого контура, то сила тока и его напряжение в колебательном контуре никогда не будут большими (поскольку это внешнее воздействие будет больше мешать его собственным колебаниям, чем помогать им). Однако в тех случаях, когда частота колебаний внешнего тока близка к собственной частоте колебаний контура, сила тока и напряжение контурного тока начинают возрастать и достигают своего максимума при полном совпадении этих частот. В этом случае говорят, что колебательный контур находится в резонансе. Особенно ярко проявляется резонанс в контурах с небольшим сопротивлением. В этом случае напряжение на конденсаторе и катушке может во много раз превосходить внешнее напряжение питающего тока. Происходит своего рода всплеск или бросок напряжения.

Явление электрического резонанса и было использовано для осуществления избирательной радиосвязи. Маркони одним из первых стал настраивать колебательные контуры передающей и принимающей станций на одну и ту же частоту. Для этого он, в частности, использовал свой джиггер, включая параллельно его вторичной обмотке конденсатор и получая таким образом колебательный контур. Схема передатчиков также была изменена включением в цепь антенны индуктивных катушек и конденсаторов, так что каждая передающая станция могла передавать сигналы с определенной частотой колебания волны. Поскольку теперь несколько радиостанций передавали сообщения каждая со своей частотой, то излучаемые ими волны возбуждали в приемной антенне переменные токи различных частот. Но приемник выбирал только те сигналы, частота которых совпадала с собственной частотой колебания его колебательного контура, ведь только в этом случае наблюдалось явление резонанса. Джиггер в этой схеме работал как фильтр и усиливал не любой антенный ток (как это было прежде), а выделял среди них ток той частоты, на которую был настроен данный приемник. С этого времени резонансные контуры стали неотъемлемой частью как приемных, так и передающих устройств.

В начале XX века уже несколько десятков ученых во многих странах с увлечением занимались беспроволочным телеграфом. Однако наибольшие успехи по-прежнему были связаны с именем Маркони, который, несомненно, был одним из самых выдающихся радиотехников этого времени. После ряда опытов передачи на большие расстояния Маркони сделал поразительное открытие — оказалось, что выпуклость земного шара нисколько не мешает движению электромагнитных волн. Это подтолкнуло его к эксперименту по телеграфированию через океан. Уже в 1901 году состоялась первая в истории трансатлантическая радиопередача, во время которой помощник Маркони, Флеминг, передал с английской станции в Польдю кодом Морзе букву "S", а Маркони, находившийся на другом берегу Атлантического океана, на острове Ньюфаундленде, принял ее на расстоянии 1800 миль.

Следующим важным моментом в усовершенствовании приемников стало создание новых волноуловителей (детекторов). Когерер Бранли сыграл важную роль в первые годы развития радиосвязи. Однако он был слишком капризным и сложным в обращении. Кроме того, его приходилось постоянно встряхивать для восстановления способности отзываться на очередной радиосигнал. Одной из центральных задач стало создание «самонастраивающегося» когерера. Первая попытка в этом направлении была сделана в 1899 году Поповым с телефоном. Вторая Маркони, сконструировавшего в начале XX века свой магнитный детектор.

Принцип действия магнитного детектора основывался на явлении так называемого гистерезиса. Дело в том, что обычно железо намагничивается с некоторым опозданием во времени. Однако намагничивание можно усилить, если в момент воздействия внешнего магнитного поля вызвать заметное сотрясение молекул железа. Это можно сделать путем механического удара или коротким импульсом другого магнитного поля. Данное явление и было использовано Маркони.

В его магнитном детекторе на два роликовых диска натягивалась бесконечная лента из мягкой железной проволоки, двигавшаяся со скоростью пять дюймов в секунду и проходившая под полюсами двух постоянных магнитов внутри небольшой стеклянной трубки. На эту трубку наматывались первичная и вторичная обмотки, причем первичная обмотка включалась в цепь антенны, а вторичная присоединялась к телефону. Проходя под полюсами магнита, железная лента намагничивалась сначала в одном, а потом в противоположном направлении. Само перемагничивание происходило под средними сдвоенными одноименными полюсами, но не тотчас в момент прохождения под ними ленты, а несколько запаздывая (из-за упомянутого выше свойства железа). Картина магнитных линий, исходивших из полюсов и замыкавшихся в железной проволоке, искажалась, и магнитные линии представлялись как бы увлекаемыми проволокой в сторону движения. Высокочастотное магнитное поле, образовавшееся внутри первичной обмотки во время прохождения принимаемого радиосигнала, мгновенно ослабляло явление гистерезиса в железной проволоке и производило в ней ударное перемагничивание. Конфигурация силовых линий резко изменялась, и они устанавливались в том положении, которое свойственно им при неподвижной проволоке. Это внезапное смещение силовых линий создавало мгновенный ток во вторичной обмотке, вызывавший звук в телефоне. Прибор не требовал встряхиваний и был всегда готов к приему очередного сигнала. В те же годы другими радиотехниками были предложены другие типы детекторов.

85
{"b":"23771","o":1}