Литмир - Электронная Библиотека
Содержание  
A
A

Полупроводниковые элементы начали постепенно вытеснять электронные лампы с начала 40-х годов. С 1940 года широкое применение в радиолокационных устройствах получил точечный германиевый диод. Радиолокация вообще послужила стимулом для быстрого развития электроники мощных источников высокочастотной энергии. Все больший интерес проявлялся к дециметровым и сантиметровым волнам, к созданию электронных приборов, способных работать в этих диапазонах. Между тем электронные лампы при использовании их в области высоких и сверхвысоких частот вели себя неудовлетворительно, так как собственные шумы существенно ограничивали их чувствительность. Применение на входах радиоприемников точечных германиевых диодов позволило резко снизить собственные шумы, повысить чувствительность и дальность обнаружения объектов.

Однако подлинная эра полупроводников началась уже после Второй мировой войны, когда был изобретен точечный транзистор. Его создали после многих опытов в 1948 году сотрудники американской фирмы «Белл» Шокли, Бардин и Браттейн. Расположив на германиевом кристалле, на небольшом расстоянии друг от друга, два точечных контакта и подав на один из них прямое смещение, а на другой — обратное, они получили возможность с помощью тока, проходившего через первый контакт, управлять током через второй. Этот первый транзистор имел коэффициент усиления порядка 100.

Новое изобретение быстро получило широкое распространение. Первые точечные транзисторы состояли из германиевого кристалла с n-проводимостью, служившего базой, на которую опирались два тонких бронзовых острия, расположенные очень близко друг к другу — на расстоянии нескольких микрон. Одно из них (обычно бериллиевая бронза) служило эмиттером, а другое (из фосфорной бронзы) — коллектором. При изготовлении транзистора через острия пропускался ток силой примерно в один ампер. Германий при этом расплавлялся, так же как кончики остриев. Медь и имеющиеся в ней примеси переходили в германий и образовывали в непосредственной близости от точечных контактов слои с дырочной проводимостью.

Эти транзисторы не отличались надежностью из-за несовершенства своей конструкции. Они были нестабильны и не могли работать при больших мощностях. Стоимость их была велика. Однако они были намного надежнее вакуумных ламп, не боялись сырости и потребляли мощности в сотни раз меньшие, чем аналогичные им электронные лампы. Вместе с тем они были чрезвычайно экономичны, так как требовали для своего питания очень маленького тока порядка 0, 5-1 В и не нуждались в отдельной батарее. Их КПД достигал 70%, в то время как у лампы он редко превышал 10%. Поскольку транзисторы не требовали накала, они начинали работать немедленно после подачи на них напряжения. К тому же они имели очень низкий уровень собственных шумов, и поэтому аппаратура, собранная на транзисторах, оказывалась более чувствительной.

Постепенно новый прибор совершенствовался. В 1952 году появились первые плоские примесные германиевые транзисторы. Их изготовление было сложным технологическим процессом. Сначала германий очищали от примесей, а затем образовывали монокристалл. (Обычный кусок германия состоит из большого числа сращенных в беспорядке кристаллов; для полупроводниковых приборов такая структура материала не годится — здесь нужна исключительно правильная, единая для всего куска кристаллическая решетка.) Для этого германий расплавляли и опускали в него затравку — маленький кристалл с правильно ориентированной решеткой. Вращая затравку вокруг оси, ее медленно приподнимали. Вследствие этого атомы вокруг затравки выстраивались в правильную кристаллическую решетку. Полупроводниковый материал затвердевал и обволакивал затравку. В результате получался монокристаллический стержень. Одновременно в расплав добавляли примесь p или n типа. Затем монокристалл резали на маленькие пластинки, которые служили базой. Эмиттер и коллектор создавали различными способами. Наиболее простой метод состоял в том, что на обе стороны пластинки германия накладывали маленькие кусочки индия и быстро нагревали их до 600 градусов. При этой температуре индий сплавлялся с находящимся под ним германием. При остывании насыщенные индием области приобретали проводимость p-типа. Затем кристалл помещали в корпус и присоединяли выводы.

В 1955 году фирмой «Белл систем» был создан диффузионный германиевый транзистор. Метод диффузии состоял в том, что пластинки полупроводника помещали в атмосферу газа, содержащего пары примеси, которая должна была образовать эмиттер и коллектор, и нагревали пластинки до температуры, близкой к точке плавления. Атомы примесей при этом постепенно проникали в полупроводник.

88. АВТОПИЛОТ

Автопилот представляет собой совокупность нескольких устройств, совместная работа которых дает возможность автоматически, без участия человека, управлять движением самолета или ракеты. Создание автопилота составило важную эпоху в истории авиации, так как сделало воздушные полеты гораздо более безопасными. Что же касается ракетной техники, где все полеты осуществляются в беспилотном режиме, то без надежных автоматических систем управления эта техника вообще не могла бы развиваться. Главная идея автоматического пилотирования заключается в том, что автопилот строго поддерживает правильную ориентацию перемещающегося в пространстве аппарата. Благодаря этому аппарат, во-первых, удерживается в воздухе и не падает, а во-вторых, не сбивается с заданного курса, поскольку от правильной ориентации прежде всего и зависит траектория его полета. В свою очередь, ориентация аппарата в пространстве определяется тремя углами. Во-первых, это угол тангажа, то есть угол между продольной осью аппарата и плоскостью земли (или, как говорят, плоскостью горизонта). Отслеживание этого угла позволяет самолету сохранять продольную устойчивость — не «клевать носом», а ракете, совершающей полет по баллистической траектории, — точнее поразить цель. Во-вторых, это угол рысканья, то есть угол между продольной осью аппарата и плоскостью полета (так мы назовем плоскость, перпендикулярную плоскости горизонта и проходящую через точку старта и точку цели). Угол рысканья указывает на отклонение аппарата от заданного курса. И, в-третьих, это углом крена, то есть угол, который возникает при повороте корпуса аппарата вокруг его продольной оси. Своевременное исправление крена позволяет самолету сохранять поперечную устойчивость и гасит беспорядочное вращение ракеты. Автоматическое управление аппаратом было бы невозможно, если бы не существовало надежного и простого способа определения этих углов. К счастью, такой способ есть, и он основан на свойстве быстро вращающегося гироскопа сохранять неизменным в пространстве положение своей оси.

Простейшим гироскопом является детский волчок, быстро вращающийся вокруг своей оси. Попробуйте повалить его щелчком, и вы увидите, что это невозможно — волчок лишь отскочит в сторону и будет продолжать вращение.

Однако ось OA волчка не имеет постоянной ориентации, поскольку ее конец A не закреплен. Гироскопы, применяемые в технике, имеют намного более сложное устройство: ротор (собственно волчок) закрепляется здесь в рамках (кольцах) 1 и 2 так называемого карданова подвеса, что дает возможность оси AB занять любое положение в пространстве.

Такой гироскоп может совершать три независимых поворота вокруг осей AB, DE и GK, пересекающихся в центре подвеса O, который остается неподвижным относительно основания.

Главное свойство быстро вращающегося гироскопа, как уже было сказано, состоит в том, что его ось стремится устойчиво сохранять в мировом пространстве приданное ей первоначальное направление. Например, если эта ось была изначально направлена на какую-то звезду, то при любых перемещениях самого прибора и случайных толчках она будет продолжать указывать на эту звезду даже тогда, когда ее ориентация относительно земных осей изменится. Впервые это свойство использовал в 1852 году французский физик Фуко для экспериментального доказательства вращения Земли вокруг ее оси. Отсюда и само название «гироскоп», что в переводе с греческого означает «наблюдать вращение».

132
{"b":"23771","o":1}