Потом Зворыкина водили по всем лабораториям кафедры телевидения. На четвертом этаже он долго смотрел на портрет человека с темными глазами и маленькой бородкой. Это был портрет Розинга.
— Учитель, — тихо произнес он. — Ему и Америка обязана телевидением… Мы вас недооценивали. У вас есть чему поучиться.
Я слушал Зворыкина, а смотрел на профессора Шмакова. Я почему-то был уверен, что в эти минуты профессор вспомнил годы блокады. Когда в холодных, нетопленных помещениях опухшие от голода сотрудники его кафедры делали ртутные взрыватели, обезвреживали неразорвавшиеся мины. Как с помощью разработанной в лаборатории аппаратуры спасали заваленных во время бомбежки людей… Выслушивая комплименты американского профессора по поводу цветной системы, профессор Шмаков помнил, как трудно далось все это».
Первую систему трехцветного телевидения в 1925 году предложил советский инженер И. А. Адамиан, а ее усовершенствованный вариант — Ю. С. Волков в 1929-м. Прошло сорок лет, но до сих пор ни одна европейская страна не организовала регулярных телепередач в красках, кроме разве что опытных, — проблема оказалась нелегкой.
В СССР для внедрения в опытное вещание выбрана так называемая одновременная совместимая система. Она позволяет смотреть красочные программы на экранах обычных приемников, правда, в черно-белых тонах; новым телевизорам доступны оба вида передач: и обычные и цветные. Впервые эта система у нас была опробована 31 марта 1955 года; в мае 1956 года она уже демонстрировалась советским и зарубежным специалистам.
…Еще в 1907 году преподаватель Петербургского технологического института Б. Л. Розинг получил «привилегию № 18076» на систему «электрической телескопии». Однако самое революционное нововведение ученого — управляемый электронный луч — не могло в полной мере проявить себя без других, столь же перспективных узлов. Любопытно: даже в 1922 году известный немецкий радиотехник Д. Михали в своей книге «Видение на расстоянии» скептически пожимал плечами: «Применение катодной трубки для телевидения практически неосуществимо».
Невзирая на пессимизм авторитетных оракулов, советские специалисты продолжали совершенствовать изобретение Розинга.
Механические узлы в системах передатчиков все еще сдерживали развитие телевидения. Выход из тупика в 1931 году независимо друг от друга нашли инженеры С. И. Катаев (СССР) и В. К. Зворыкин (США). Они, как и Розинг, заставили работать электронный луч — теперь уже не только в трубке — приемнике, но и в передатчике. Применение этого изумительно гибкого и эффективного инструмента упразднило громоздкие механические детали и позволило построить легкий компактный передатчик, упрятав его в небольшую стеклянную колбу. Так началась революция в телевидении.
Трубка Катаева (ее сегодняшние варианты называют иконоскопами) подняла четкость изображения, позволив увеличить количество строк в десятки раз.
Потом был имедж-иконоскоп. Так за границей именуют трубку, изобретенную в 1933 году П. В. Шмаковым и П. В. Тимофеевым. Идею имедж-иконоскопа подсказало авторам в какой-то мере изобретение инженера Л. А. Кубецкого — фотоумножитель (1930 год). Трубка Шмакова — Тимофеева оказалась в десять раз чувствительней, чем обычный иконоскоп.
Естественно, что в коротком рассказе одни фамилии встречаются чаще других, а иные и вообще отсутствуют. Как на экране телевизора: если кто-то дан крупно, значит прочие ушли на второй план или остались за кадром; если же панорама охвачена целиком, то все действующие лица одинаково мелки, так что ни людей, ни их поступков разобрать нельзя…
Можно было бы упомянуть, что русский физик А. Г. Столетов, учитель П. Н. Лебедева, заложил основы учения об электронной фотоэмиссии. Что эти идеи развивались советскими учеными П. И. Лукирским, С. С. Прилежаевым, Н. С. Хлебниковым, многими другими. Что все современные передающие трубки обязаны своим существованием и совершенством пионерским разработкам А. А. Чернышова (1925 год), А. П. Константинова (1930), С. И. Катаева (1931), П. В. Шмакова и П. В. Тимофеева (1933), Г. В. Брауде (1938). Этот список при желании легко продолжить.
Розинг, Столетов, Попов — они были каменщиками, заложившими первые кирпичи в фундамент, на котором поднялась в небо исполинская Останкинская телебашня. Поднялась потому, что наследие русских ученых попало в хорошие руки.
Профессор П. В. Шмаков тоже начинал свою научную деятельность до революции, и его слова звучат особенно убедительно: «Для создания той или иной телевизионной системы требуется тесное содружество математиков, физиков, химиков, оптиков, вакуумщиков, энергетиков, акустиков, механиков и радистов всех профилей. Такое содружество научных сил у нас в России стало возможным только в советскую эпоху, когда были созданы крупнейшие исследовательские институты и лаборатории, а также большое число высших учебных заведений. Поэтому все практические достижения в области телевидения относятся именно к советской эпохе. Ученые дореволюционной России, занимавшиеся вопросами телевидения, были одиночками, и охват всей проблемы в целом для них был невозможен».
Сейчас телевизор прочно вошел в наш быт. Каждый вечер вспыхивают голубые экраны в миллионах квартир. Аппараты советских марок пользуются спросом и за границей.
22 марта 1965 года между правительствами СССР и Франции подписано соглашение о сотрудничестве с целью внедрить единую систему цветного телевидения на основе хорошо зарекомендовавшего себя проекта «СЕКАМ».
Телекамеры ведут репортажи не только с поверхности Земли, но и с борта космических кораблей. В дни группового полета «Востока-3» и «Востока-4» родилось космовидение — изображение передавалось на миллионы голубых экранов не только СССР, но и других стран, подключенных к системам Интервидения и Евровидения.
Можно без конца рассказывать о триумфах электронного луча, создающего изображение на экранах телевизоров. Да и только ли телевизоров? А осциллографов? А радиолокаторных индикаторов? А электронных микроскопов?
Электронная оптика… Сейчас это обширнейшая область науки и техники, в основе которой лежит формирование заряженных частиц в организованные потоки — широкие ли пучки, узкие ли лучи — и управление ими. Немалый вклад в ее развитие внесли советские ученые А. А. Лебедев, Г. А. Гринберг, многие другие. Именно в лаборатории Лебедева, в Государственном оптическом институте, еще в 1940 году был построен первый советский электронный микроскоп, дававший увеличение в 10 тысяч раз. Сегодня эта цифра превзойдена более чем десятикратно.
Чтобы постигнуть смысл приведенных «холодных числ», достаточно сказать, что самый мощный оптический микроскоп, хотя его никак не назовешь подслеповатым, далеко уступает электронному в зоркости — в десятки и сотни раз. Именно благодаря электрическим и магнитным «линзам», фокусирующим электронные лучи, удалось разглядеть тонкую структуру клетки, даже увидеть отдельные «живые молекулы», а это привело, как известно, к настоящей революции в биологии.
Богатейшие возможности пучка частиц в роли волшебного карандаша уже проиллюстрированы на примере телевидения. Здесь корпускулярное излучение, как когда-то волновое (лазер!), доказало нам свою «ловкость», свою грациозную легкость, мобильность, гибкость. Между тем оно тоже способно быть мощным и разрушительным.
Согните его в бараний рог!
Под Серпуховом по соседству с крестообразным радиотелескопом построено еще одно чудо техники, кольцевидное. Его поперечник — около полукилометра, периметр — полтора. Ныне это самый большой, самый мощный ускоритель, какого еще не видывал свет. Представляете? Точнейшая, сложнейшая машина размером со стадион!
…О чудесах-пирамидах умолкнет пусть варварский Мемфис.
Посрамлена и кичливость всех Вавилонских твердынь.
Храмом Эфесским отныне не хвастают пусть ионийцы.
Взора не тешит уже славный Делосский алтарь.
Да не возносят теперь до небес, похваляясь, карлицы
Чудо свое — Мавзолей, что надменно вздымается ввысь.
Все уступают они творению…