где Y факт. – фактическое, а Y расч. – расчетное (предсказанное по уравнению регрессии) значение результативного признака.
Зная величину коэффициента корреляции R, можно дать качественную оценку силы связи между зависимой и независимыми переменными, включенными в данное уравнение. С целью классификации силы связи обычно используют шкалу Чеддока (см. табл. 2.1).
Таблица 2.1. Шкала Чеддока для классификации силы связи
В случае между переменными существует функциональная связь, то R=1, а если корреляционная связь отсутствует, то R=0. Поскольку в таблице 2.2 множественный коэффициент корреляции R равен 0,8456, то согласно таблице Чеддока, связь между переменными, включенными в уравнение регрессии можно считать высокой. Следует также заметить, что если коэффициент множественной корреляции меньше 0,7, то это означает, что величина коэффициента детерминации R2 (о нем мы расскажем ниже) будет меньше 50%, а потому регрессионные модели с таким коэффициентом детерминации не имеют большого практического значения.
Однако самым важным является другой параметр регрессионной статистики – R-квадрат (его мы выделили жирным шрифтом), обозначающий коэффициент детерминации R2. Коэффициент детерминации R2 характеризует долю дисперсии результативного признака Y, объясняемую уравнением регрессии, в общей дисперсии результативного признака. Коэффициент детерминации R2 находится по формуле (2.6):
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.