Литмир - Электронная Библиотека
A
A

Однако сроки человеческой жизни нам всё еще неподвластны, и на то есть серьезные причины. Процессы старения изучены лишь на самом элементарном уровне, и нельзя судить с уверенностью, не создаст ли искусственная долговечность проблем, скажем, со здоровьем. Но когда люди видят, что можно сделать для мышей, они волей-неволей задаются вопросом: а нельзя ли сделать то же самое для нас? Так разгорается, как выразился биолог из Мичиганского университета Ричард Миллер, «органическая зависть». Неудивительно, что многие ученые-генетики — Синтия Кеньон в первых рядах — увлеклись созданием лабораторий для поисков эликсира жизни.

Но пока открывались всё новые компании, противоречия во взглядах на глубинную природу старения и в конечном счете смерти продолжали нарастать.

В 2002 году большая группа геронтологов выпустила своего рода объединенный манифест. Возглавил ее Леонард Хейфлик, один из старейшин этой дисциплины; под заявлением стояла пятьдесят одна подпись. Обращаясь ко всему обществу, ученые предостерегали против посулов, извращающих геронтологию и соблазняющих «жертв» иллюзиями вечной молодости. «Для старения животным не нужны никакие генетические команды, — говорилось в тексте. — Продление жизни сверх репродуктивного периода и в отдельных случаях сверх сроков выращивания потомства не поддерживается эволюцией… Процессы старения не запрограммированы генетически». Два года спустя Хейфлик начал свою статью в «Журнале геронтологии» решительным заявлением: «Никакие вмешательства извне не могут замедлить, остановить или в корне изменить процессы старения людей».

Это противоречило всему, что отстаивали исследователи нематод, дрозофил и мышей-«мафусаилов». Да как только этому Хейфлику могло прийти в голову, при всех-то полученных доказательствах, что старение нельзя прекратить? Ответ заключался в его самом знаменитом открытии: так называемом пределе Хейфлика.

В октябре 1951 года биолог Джордж Гей, выступив по национальному телевидению США, возвестил начало новой эры в медицинской науке. Гей с женой Маргарет работал в Университете Джонса Хопкинса, руководя цитологической лабораторией. Два десятка лет они посвятили поискам человеческой клетки, способной к вечной жизни in vitro: такие свойства могли послужить эффективным средством против рака. Когда же 31-летняя женщина по имени Генриетта Лакс, заболев раком шейки матки, подверглась биопсии, супруги наконец получили то, что искали. Джордж Гей продемонстрировал перед камерами пробирку с клеточной культурой, взятой из опухоли Генриетты Лакс, — самым продуктивным и притом абсолютно здоровым материалом из всех, какие когда-либо наблюдали биологи. «Возможно, дальнейшие фундаментальные исследования в начатом нами направлении, — заявил Гей, — проложат дорогу к полному уничтожению рака».

Генриетта Лаке скончалась от болезни как раз в тот самый день. Но и рак лишился в одночасье зловещей ауры непобедимости; на завершение борьбы были брошены огромные ресурсы. Наследие Лакс — линия клеточных культур, названная в ее честь HeLa, — стало еще одной «рабочей лошадкой» биологии. Ее клетки помогали создавать вакцину против полиомиелита, тестировались на атомных полигонах и даже слетали в космос на шаттле. Они и сейчас продолжают размножаться в лабораториях по всему миру (совокупность клеток HeLa уже превысила прижизненную массу тела «прародительницы»); но главное свершение, вероятно, еще впереди. За пятьдесят с лишним лет, минувших со смерти Генриетты, исследователи выявили многочисленные взаимосвязи между опухолевыми заболеваниями, бессмертными клетками и… старением. Судя по всему, самое важное открытие в этой области было сделано в лаборатории Леонарда Хейфлика.

В начале 1960-х, исследуя механизмы развития рака, он обнаружил, что нормальная клетка способна разделиться не больше чем примерно пятьдесят раз: в засеянных культурах количество клеток за десять месяцев увеличивалось вдвое, а затем клетки неожиданно погибали. Удивленный и заинтригованный Хейфлик с ассистентом Полом Мурхедом успешно повторил опыты, после чего отправил нескольким коллегам-скептикам образцы с указанием дня и часа, когда клетки начнут гибнуть. «Нашим предсказаниям, разумеется, никто не поверил, но как только телефон стал разрываться от добрых вестей — образцы перемерли точно в срок, — мы решили не медлить с объявлением», — вспоминал впоследствии Хейфлик.

Открытое им явление получило известность как репликативное старение клеток. Самое любопытное в этом процессе — его эволюционный возраст: репликативное старение существует больше миллиарда лет; оно проявляется совершенно одинаковым образом у дрожжевых грибков и в некоторых клетках человеческого организма. Скажем, образцы наших фибробластов — соединительной ткани, помогающей, в частности, заживлению ран, — можно некоторое время успешно размножать в чашке Петри. Но затем неизбежно наступит момент, когда они прекратят делиться и умрут.

Отчего так? Это, по всем признакам, связано с повреждениями ДНК, содержащейся в клеточных ядрах. «Часовым механизмом» старения наших клеток служат тело-меры — вереницы повторяющихся последовательностей кислотных молекул на концевых участках всех хромосом. Теломеры не дают хромосомам «склеиваться» друг с другом, но при каждом очередном делении клетки они воспроизводятся в неполном, укороченном виде. В итоге, когда теломеры достигают определенной степени износа, клетка погибает. Точные подробности этой механики неизвестны, но она играет ведущую роль в борьбе против рака.

Соблазн состоит в том, что ученые знают способ воспрепятствовать репликативному старению. Раковые клетки содержат специальный фермент теломеразу, который достраивает теломеры до полной длины в каждом репликативном цикле. Это позволяет клеткам делиться без удержу, из-за чего злокачественные опухоли прогрессируют так стремительно. Укорачивания теломер можно избежать, если здоровые клетки будут сами синтезировать теломеразу. А они это могут.

В начале 1998 года научно-исследовательская группа корпорации «Джерон» из Кремниевой долины под руководством Андреа Боднар сообщила о результатах имплантации в человеческую клетку гена, инициирующего синтез теломеразы. На момент публикации в журнале «Сайенс» подопытные клеточные культуры, прожив вдвое дольше контрольных, по всем характеристикам выглядели как свежие. Словно собственное производство теломеразы избавило их от проклятья репликативного старения и наделило полным бессмертием.

Да только ни одно мыслящее существо не захочет бессмертных клеток в собственном теле: ведь они почти наверняка будут стремиться разрастись в опухоль. Таким образом, укорачивание теломер обременяет нас старостью, но дает взамен защиту от рака. Это относится и к другой форме программируемой клеточной смерти: апоптозу.

Апоптоз проявляется как реакция на химические сигналы. Вирусная инфекция, механическое повреждение или обычный стресс организма стимулируют каскад сигналов, воздействующих на секрецию гормонов роста или снабжение клетки кислородом. Все эти факторы могут дать ей команду умереть: ферменты, называемые каспазами, инициируют разрушительный процесс, и в результате клетка как бы удушает и пожирает сама себя. Вместе с тем апоптоз — одна из важнейших основ онтогенетического развития: без него, например, на конечностях эмбриона не обособятся пальцы. Но если процесс нарушается, позволяя клеткам жить вечно, это может вызвать рак.

Тактическая задача онкологов гораздо сложнее, чем получение вечно живой клетки. Где-то совсем близко кроется дразнящая тайна. «Возможно, всего лишь в одном шаге от проклятья неумирающих раковых клеток, — писали авторы обзорной статьи о раке и старении в августовском выпуске „Нейчур“ 2007 года, — лежит разгадка всех проблем постижения и продления сроков нашей жизни». Но обольщаться насчет панацеи пока рано: что касается глубинных механизмов рака и старения, констатируют авторы, «большинство фундаментальных вопросов не находят ответов».

37
{"b":"226402","o":1}