Литмир - Электронная Библиотека
Содержание  
A
A

Впрочем, еще в XIII веке японские мастера рисовали акварели на рисовых зернах. Живет этот редкий промысел и сейчас. Как сообщали газеты, цена такого «зернышка» порой превышает цену роскошного мотоцикла.

Трудно сказать, какие размеры имела блоха, которую подковал герой Лескова Левша. Однако на фотографии вы найдете подковки на прыжковых лапках настоящей засушенной блохи. Ее в 1961 г. подковал по всем правилам науки о ковке лошадей украинский мастер Николай Сергеевич Сядристый. Любопытно, что эту работу он считает одной из самых простых, своего рода «этюдом для начинающих», а серьезным делом — изготовление сверхминиатюрных надписей, картин и скульптур размером с рисовое зерно.

Подобная сверхтонкая проработка деталей встречается и на некоторых русских иконах XIX века.

Юный техник, 2006 № 02 - _54.jpg
Юный техник, 2006 № 02 - _55.jpg

Н.С. Сядристый сумел усадить фигурку человека на хоботок комара, создал электромотор размером с лапку муравья и, конечно, подковал блоху (на рисунках сверху вниз).

Искусство изготовления сверхминиатюрных вещей в значительной мере утеряно. Отчасти потому, что мастера старались сохранить тайны своей технологии. Но такой тактики придерживались не все. Так, многие из секретов ручной технологии изготовления сверхминиатюрных вещей описаны в книге: Н.С.Сядристый. Тайны микротехники, Москва, 1975.

Одна из первых его работ — новогоднее поздравление с 1960 годом — была выгравирована на волосе.

То, что рука человека способна выполнять столь тонкие движения, сродни волшебству. Однако это получается далеко не у всех.

Вполне возможно, что такую работу мог бы значительно облегчить специальный манипулятор, копирующий и воспроизводящий наши движения с уменьшенной амплитудой. Действие манипулятора основано на принципе гидравлического замедления. Два цилиндра с поршнями внутри соединены шлангами и наполнены жидкостью. Если диаметры цилиндров неодинаковы, то при перемещении поршня в меньшем цилиндре поршень большего переместится на меньшую величину.

Допустим, мы соединили шприц объемом 1 см3 со шприцем объемом 5 см3. Тогда при перемещении поршня меньшего шприца на 1 см поршень большего переместится на 2 мм.

На рисунке 1 вы видите эскиз простейшего микроманипулятора для художественных работ под микроскопом.

Юный техник, 2006 № 02 - _56.jpg

Он состоит из блока управления, воспринимающего движения руки оператора, и блока повторения этих движений в уменьшенном виде.

Вся система состоит в основном из готовых элементов. В блоке управления применены три медицинских шприца объемом 0,5 см3. Каждый из них соединен при помощи трубочек от медицинской капельницы с соответствующим шприцем на стороне блока повторения. Но объемы каждого из них 5 см3. При этом достигается десятикратное уменьшение размаха движений руки оператора.

Юный техник, 2006 № 02 - _57.jpg

Н.С. СЯДРИСТЫЙ, фото 1975 г.

Рукояткой управления можно весьма сложные движения, состоящие из вращения относительно трех осей и линейного перемещения. Такие же движения, но с уменьшением в десять раз, совершает инструмент рабочего блока.

Вообще-то полагалось бы соединять рукоятку управления с ее шприцами при помощи шатунов с шаровыми шарнирами. Но такой механизм слишком сложен в изготовлении. Поэтому рукоятка соединяется со штоками шприцев при помощи резиновой шайбы. Таким же способом соединены штоки поршней на рабочей стороне манипулятора. Здесь в центре резиновой шайбы закреплен патрон для применения инструмента.

Рабочий блок манипулятора крепится к столику микроскопа, а блок управления — к лабораторному столу. Весьма важно при заправке системы жидкостью (глицерин, вазелиновое масло) удалить из нее пузырьки воздуха. Для этой цели на каждом шланге, соединяющем пару шприцев, установлен тройник от аквариума с зажимом от капельницы. Через него удаляется избыток жидкости и пузырьки воздуха.

Микроманипулятор позволяет делать рисунки и барельефы. Вполне возможно его применение и для биологических опытов, например, для пересадки клеточных ядер.

А.ИЛЬИН

ВМЕСТЕ С ДРУЗЬЯМИ

Вперед — с воздушным змеем!

В восьмидесятые годы XX века мы рассказывали, как сначала серфингисты, а потом и сноубордисты стали осваивать новый вид спорта и развлечений — катание на доске под парусом, соответственно по воде и по снегу. Сегодня очередное поколение любителей экстрима предпочитает гонки за воздушным змеем-буксировщиком.

Юный техник, 2006 № 02 - _58.jpg

Если вдуматься, такое развитие идеи кажется вполне логичным. Ветры у поверхности нашей планеты дуют не всегда, зато на высоте в десятки, а то и сотни метров они гуляют практически постоянно. Тогда почему бы и не поднять парус на соответствующую высоту?

Считают, одним из первых эта идея пришла в голову англичанину Джорджу Кейли. В 1853 году он провел соответствующий эксперимент, использовав для первоначального подъема воздушного змея на нужную высоту упряжку лошадей. В итоге, по свидетельству очевидцев, рассерженный кучер крикнул: «Простите, сэр Джордж, но я хотел бы получить расчет! Я нанимался править лошадьми, но не воздушными змеями!..»

Сейчас лошадиная упряжка стала редкостью. Зато конструкции воздушных змеев настолько совершенны, что запустить такой змей в небо может без особого труда один человек. Между тем тяга у такого змея-паруса столь велика, что он способен тащить лыжника или сноубордиста со скоростью в десятки километров в час.

Юный техник, 2006 № 02 - _59.jpg

Весит змей-буксировщик, сшитый из современных синтетических материалов, 2–3 кг; площадь его несущей поверхности в среднем около 4 м2, и его, в принципе, несложно купить в магазинах больших городов.

Но не все наши читатели — горожане. А змей, хоть и стоит в 2–3 раза дешевле классического параплана и в 3–7 раз меньше, чем хороший дельтаплан, по цене все равно сравним с очень хорошим велосипедом, а то и мотоциклом. Поэтому мы предлагаем вам построить воздушный змей-буксировщик самостоятельно.

На первом этапе вы опробуете свои силы и приобретете необходимый опыт при постройке уменьшенной модели с размахом крыла примерно в 1 м. Конструктивно эта модель не сложнее схематического планера. А чтобы было интереснее его запускать, оснастите его «пилотом-роботом» (манекеном из картона). Заодно он поможет вам и правильно сцентровать модель — добиться, чтобы змей устойчиво держался на ветру, а, отпущенный с леера, совершал плавную посадку.

После этого можно будет приступить к постройке полнометражного змея-тягача с размахом крыльев 3–4 м и площадью крыла до 4 м2. Он, как показывает расчет, способен при свежем ветре буксировать за собой по льду или снегу легкие санки или лыжника-подростка.

Если скорость движения вам покажется недостаточной, из змея-моноплана можно будет сделать биплан, добавив к нему сверху еще одно крыло.

Для каркаса подойдут деревянные рейки (толщиной 2–3 см) или дюралевые трубки (диаметром 1–2 см). Для обтяжки используйте синтетическую или обычную ткань, прочную бумагу. Соединения делаются на гвоздях или косынках-кницах (см. рис.). Можно также использовать стеклопластиковые жгуты, пропитанные эпоксидной смолой. После полимеризации смолы соединение трубок получается довольно прочным и легким. Соотношение ширины крыла (хорды) к размаху крыльев следует взять примерно 1: 6 или 1: 8.

13
{"b":"206784","o":1}