Я когда-то видел статью, где упоминалось, что Торп собирается заморозить свое тело после смерти. Я сказал ему, что это смахивает на азартную игру — и к тому же выглядит очень по-калифорнийски.
— Ну, как говорит один мой друг-фантаст, «Другой игры у нас для вас нет».
Глава 10
Все нормально
Автор позволяет себе слишком много мучного, дабы прочувствовать, как рождалась статистика.
Некоторое время назад я приобрел электронные кухонные весы. Они состояли из стеклянной платформочки и «легкого в использовании голубого дисплея с задней подсветкой». Покупка эта отнюдь не была симптомом овладевшего мною желания готовить изысканные десерты. Равным образом не рассчитывал я и на частые посещения моей квартиры местными наркоторговцами. Просто меня заинтересовал процесс взвешивания. Вынув весы из коробки, я тут же отправился в ближайшую булочную — «Греггс» — и купил там багет. Взвесив его, я выяснил, что его вес составляет 391 грамм. На следующий день я снова отправился в ту же булочную и купил еще один багет. Этот оказался чуть тяжелее — 398 граммов. «Греггс» — это известная британская сеть, в которую входит более тысячи магазинов, где вы можете выпить чашку чаю и купить сэндвич с колбасой или булочку, покрытую сахарной глазурью. Однако меня интересовали только багеты. Третий, купленный в «Греггсе» багет весил 399 граммов. Мне уже изрядно надоело поглощать в день по целому багету, однако я продолжал ежедневную процедуру взвешивания. Четвертый багет оказался гигантом: 403 грамма. Я прикидывал даже, не повесить ли его на стену, как чучело рекордно большой рыбы. Ведь вес багета, продолжал размышлять я, не должен постоянно увеличиваться. Так и случилось: пятый весил жалкие 384 грамма.
В XVI и XVII веках Западную Европу охватила страсть к сбору всевозможных данных. Такие измерительные средства, как термометр, барометр и курвиметр — колесико, позволяющее засекать пройденное вдоль дороги расстояние, — были изобретены именно тогда, и их использование представляло собой восхитительное новшество. Не последнюю роль сыграло и то, что арабские числительные, обеспечивавшие эффективные обозначения для выражения результатов измерений, наконец полностью утвердились среди образованных классов. Возникший измерительный бум ознаменовал собой начало современной науки. Возможность описывать мир в количественных, а не качественных терминах полностью изменила наши взаимоотношения с природой. Числа, предоставив язык для научного исследования, внушили человеку уверенность, что он может добиться более глубокого понимания истинного устройства вещей.
Процедура измерения содержит в себе некий элемент веселой игры; и правда, мой ежедневный ритуал, состоящий в приобретении и взвешивании багета, оказался на удивление приятным занятием. От «Греггса» я возвращался почти бегом, сгорая от нетерпения, — сколько же граммов будет весить мой новый багет? И тут острота моих чувств ничуть не уступала жажде узнать счет футбольного матча или результаты финансовых торгов.
Мои ежедневные походы в булочную были обусловлены желанием составить таблицу распределения весов; после приобретения десятого багета я мог заключить, что самый малый вес составляет 380 граммов, самый большой — 410 граммов, а одно из значений — 403 грамма — повторялось. Разброс оказывается довольно широким, решил я. Все багеты куплены в одном и том же магазине, у всех одна и та же цена, и тем не менее самый тяжелый почти на 8 процентов тяжелее самого легкого!
Заинтригованный происходящим, я продолжал свои опыты. Несъеденный хлеб копился у меня на кухне, а я приходил в полный восторг, глядя, как веса распределялись по моей таблице. Хотя я и не мог предсказать, сколько будет весить следующий багет, было уже видно, что, без сомнения, в таблице присутствует некоторая закономерность. После сотого багета я прекратил эксперимент. К концу моих исследований каждое число между 379 граммами и 422 граммами, за исключением всего четырех, встречалось по крайней мере однажды.
Хотя я и приступил к реализации «хлебного» проекта по причинам математическим, я заметил, что тут имеют место и интересные психологические побочные эффекты. Перед взвешиванием каждого багета я внимательно его разглядывал и размышлял о его цвете, длине, толщине и текстуре, каковые довольно заметно варьировали от одного образца к другому. К самому себе я стал относиться как к знатоку багетов и временами даже говорил себе: «Ну, этот будет потяжелее», или «Сегодня, вне всякого сомнения, попался совершенно рядовой». При этом ошибался я столь же часто, как и оказывался прав. Тем не менее мой ограниченный опыт предсказателя нисколько не умалил мою веру в то, что я и в самом деле стал экспертом по оценке багетов. Видимо, это было нечто вроде того самообольщения, что свойственно знатокам спорта и финансов, которые хотя и не способны предсказывать случайные события, однако же с успехом строят на таких предсказаниях свою карьеру.
Надо сказать, более всего меня обескураживали ситуации, когда багеты от «Греггса» оказывались или экстремально тяжелыми, или экстремально легкими. В эти редкие моменты я испытывал сильное волнение. Когда вес багета оказывался исключительно необычным, весь день становился, казалось, таким же исключительно необычным, как если бы уникальные свойства данного багета как-то влияли на другие стороны жизни. Рассуждая рационально, я понимал, что время от времени мне обязательно должны попадаться или сверхбольшие, или сверхмалые багеты, но тем не менее каждое появление багета с экстремальным весом подстегивало мои эмоции. Я не считаю себя суеверным, но, удивительное дело, я не смог избежать попытки углядеть какой-то смысл в случайности. Насколько же все мы подвержены ни на чем не основанным верованиям!
* * *
Ученые эпохи Просвещения нашли в цифрах надежных помощников, привнесших в мир некую определенность, однако она, эта определенность, никогда не была полной. В самом деле, стоит вам только измерить одну и ту же вещь дважды, как вы получите два различных результата. Эти различия немало смущали ученых, вознамерившихся дать ясные и точные объяснения природных явлений. Галилео Галилей, например, заметил, что, когда он с помощью своего телескопа вычислял угловые расстояния между звездами, результаты были подвержены вариациям, причем вариации эти нельзя было отнести на счет ошибки в его вычислениях. Скорее они случались потому, что процедура измерения неизбежно содержит в себе некую «размытость». Числа, казалось, не вполне оправдывали возложенные на них надежды всегда быть точными.
Ровно это я и наблюдал, взвешивая свои багеты. Вероятно, целый ряд факторов вносил вклад в вариации веса: количество и консистенция использовавшейся муки, время, проведенное в печи, путешествие багетов от центральной пекарни «Греггса» к ближайшему ко мне магазину, влажность воздуха и т. д. Подобным же образом, имелось много переменных, влиявших на результаты, получаемые с помощью телескопа Галилея: например, атмосферные условия, температура оборудования и личные факторы, вроде того, насколько уставшим был Галилей, когда снимал показания.
Тем не менее Галилей смог заметить, что вариации в его результатах подчинялись определенным правилам: данные каждого измерения имели тенденцию группироваться вокруг некоторого центрального значения, причем малые отклонения от этого центрального значения случались намного чаще, чем большие. Кроме того, Галилей заметил, что разброс был симметричным — каждое данное измерение могло оказаться меньше центрального значения с той же частотой, что и больше него.
Точно так же полученные мной результаты по взвешиванию багетов показали, что веса группируются приблизительно вблизи значения в 400 граммов, плюс-минус 20 граммов. Хотя ни один из моих ста багетов не весил ровно 400 граммов, имелось намного больше багетов с весом около 400 граммов, чем с весом около 380 граммов или около 420 граммов. И разброс также был на вид довольно симметричным.