Литмир - Электронная Библиотека
A
A

Следовательно, реактивные двигатели—это двигатели, предназначенные для движения, двигатели транспортные. А точнее — это двигатели для движения стремительного, двигатели высокоскоростного транспорта, каким является авиация. При больших скоростях движения реактивным двигателям нет равных.

Как же создает турбореактивный двигатель тягу, необходимую для полета самолета? Чтобы ответить на этот вопрос, разберемся, как устроен этот двигатель. Оказывается, он представляет собой сложную машину, даже несколько сложных машин, составляющих единый комплекс. Что же это за машины?

Глава третья

Турбореактивный двигатель

Назначение одной из машин, составляющих турбореактивный двигатель, совершенно очевидно. Ведь из двигателя наружу через выходное отверстие должен вытекать с большой скоростью воздух (газы). Как же можно этою добиться? Очевидно, для этого давление воздуха внутри двигателя должно быть большим, чем в окружающей атмосфере.

Все, конечно, наблюдали, как со свистом вырывается пар из чайника, когда в нем в результате кипения воды увеличивается давление, или как с шумом вытекает под давлением вода из открытого водопроводного крана. Но как можно увеличить давление воздуха внутри турбореактивного двигателя?

Для повышения давления воздуха его необходимо сжать. Многие знают, как осуществляется сжатие воздуха, — для этого существуют специальные машины, так называемые компрессоры.

Поэтому воздух, поступающий через входное отверстие внутрь двигателя, прежде всего попадает в компрессор и сжимается там до давления в несколько атмосфер.

Компрессор — это важнейшая часть турбореактивного двигателя. От компрессора зависят и технические данные двигателя, и его внешний вид. В настоящее время широкое применение в турбореактивных двигателях получили компрессоры двух типов: центробежные и осевые. Турбореактивный двигатель с центробежным компрессором изображен на рис. 9 и с осевым компрессором — на рис. 10.

Главной частью центробежного компрессора является крыльчатка, которая представляет собой большое, до 1 м в диаметре, колесо с тонкими лопатками, расположенными на одной или обеих торцовых (боковых) поверхностях (рис. 11). Эта крыльчатка вращается с большим числом оборотов внутри корпуса. Воздух, засосанный в двигатель, подводится к крыльчатке компрессора у ее средней части и сразу, попадая в каналы между лопатками крыльчатки, начинает вместе с ней вращаться с большой скоростью вокруг оси крыльчатки. В результате этого на молекулы воздуха начинает действовать большая центробежная сила и они отжимаются от центра к периферии крыльчатки, так что из компрессора выходит сжатый воздух.

Но сжатие воздуха происходит не только в крыльчатке центробежного компрессора, оно не прекращается и после того, как молекулы воздуха слетают с крыльчатки. Объясняется это тем, что воздух, отбрасываемый крыльчаткой, обладает не только повышенным давлением, но и большой скоростью, измеряемой сотнями метров в секунду, а следовательно, и большой кинетической энергией. Эта энергия и используется для дополнительного сжатия воздуха.

Один из основных законов течения всякой жидкости, а следовательно, и воздуха (этот закон носит имя открывшего его русского академика Даниила Бернулли) гласит, что кинетическая энергия может быть преобразована в потенциальную энергию, в энергию давления. Чтобы увеличить давление быстро текущего газа, его нужно плавно затормозить, постепенно уменьшить его скорость. Вот почему воздух, с огромной скоростью покидающий крыльчатку, поступает в так называемый диффузор, который является второй важнейшей частью центробежного компрессора. В диффузоре, кольцом охватывающем крыльчатку, установлены криволинейные, изогнутые лопатки, хорошо видные на рис. 11. Каналы между этими лопатками представляют собой как бы расширяющиеся трубы — их проходные сечения постепенно увеличиваются, а это как раз и нужно для того, чтобы затормозить воздух. Входя в каналы диффузора с большим давлением и большой скоростью, воздух покидает эти каналы с малой скоростью, но зато с еще большим давлением.

Наличие лопаток в диффузоре вовсе не является обязательным — торможение воздуха с повышением его давления можно осуществить и в безлопаточном диффузоре, представляющем собой просто кольцевой канал вокруг крыльчатки.

Центробежный компрессор имеет большой диаметр, а длина его сравнительно невелика. У осевого компрессора, наоборот, диаметр меньше, но длина значительно больше. Это объясняется тем, что осевой компрессор устроен совсем не так, как центробежный: воздух течет в нем не от центра к периферии, а вдоль оси компрессора; поэтому он и назван осевым.

Воздушно-реактивные двигатели - i_014.png
Воздушно-реактивные двигатели - i_015.png

Рис. 9. Отечественный турбореактивный двигатель РД-500 с центробежным компрессором: а — общий вид; б — устройство

Воздушно-реактивные двигатели - i_016.png

Рис. 10. Отечественный турбореактивный двигатель РД-10 с осевым компрессором: а — общий вид; б — устройство

Воздушно-реактивные двигатели - i_017.png

Рис. 11. Центробежный компрессор турбореактивного двигателя РД-500

Осевой компрессор представляет собой ряд установленных друг за другом колес, по окружности которых укреплены легкие металлические лопатки (рис. 12). Эти лопатки в поперечном сечении имеют профиль, похожий на дужку лопасти винта или крыла самолета. Вообще каждое отдельное колесо напоминает собой небольшой винт или вентилятор, имеющий много коротких лопастей.

Воздушно-реактивные двигатели - i_018.png

Рис. 12. Осевой компрессор турбореактивного двигателя РД-10

Так же, как и винт, каждое колесо компрессора (оно называется рабочим колесом) отбрасывает воздух назад с большой скоростью и вместе с тем закручивает его по направлению своего вращения. Но в отличие от винта рабочее колесо компрессора не только ускоряет движение воздуха, но и сжимает его. Давление воздуха за колесом больше, чем перед ним, хотя это повышение давления и меньше, чем в крыльчатке центробежного компрессора. Однако сжатие воздуха в осевом компрессоре происходит не только в рабочем колесе. Как и в диффузоре центробежного компрессора, за рабочим колесом происходит дополнительное сжатие воздуха: скорость его уменьшается, а давление растет. Роль диффузора в осевом компрессоре выполняет так называемый неподвижный направляющий аппарат. Этот аппарат представляет собой ряды неподвижных лопаток, установленных между вращающимися рабочими колесами и похожих по форме на лопатки этих колес. Воздух, попадающий из вращающихся колес в каналы между неподвижными лопатками, тормозится в них так же, как это происходит с воздухом в каналах между лопатками диффузора центробежного компрессора. Скорость воздуха при таком торможении уменьшается и становится обычно такой же, какой она была перед рабочим вращающимся колесом. Давление воздуха при этом соответственно растет. Направление движения воздуха в этих каналах также изменяется, в результате чего за неподвижными лопатками скорость потока имеет обычно то же направление, что и до поступления на вращающееся колесо.

Каждое вращающееся колесо с последующим рядом неподвижных лопаток представляет собой ступень компрессора. В одной ступени давление воздуха увеличивается обычно на 20—30%, но так как таких ступеней осевой компрессор имеет несколько, от 5 до 15 и даже более, то выходящий из осевого компрессора воздух обычно имеет давление, большее, чем в случае центробежного компрессора.

В современных турбореактивных двигателях чаще применяется осевой компрессор. Это объясняется тем, что в осевом компрессоре можно получить большие степени сжатия воздуха, чем в центробежном. Увеличение степени сжатия воздуха в компрессоре, как об этом будет сказано ниже, является одним из важных направлений развития турбореактивных двигателей. Кроме того, через осевой компрессор может пройти за секунду больше воздуха, чем через центробежный компрессор такого же диаметра. Тяга же турбореактивного двигателя, как мы знаем, прямо пропорциональна секундному количеству протекающего через него воздуха.

7
{"b":"191591","o":1}