Литмир - Электронная Библиотека
A
A

Итак, идея странствовать во Вселенной под защитою вещества, непроницаемого для тяготения, приводит к тому, что в логике называется «порочным кругом». Чтобы воспользоваться таким веществом, надо преодолеть притяжение Земли, т. е. выполнять именно то, ради чего и должен быть придуман заслон тяготения. Следовательно, заслон для тяготения не разрешил бы проблемы небесных путешествий.

Глава 4. Можно ли ослабить земную тяжесть?

Если несбыточны надежды укрыться от силы тяжести, то, быть может, существуют способы хотя бы ослабить тяжесть на земной поверхности?

Казалось бы, закон тяготения не допускает подобной возможности даже в теории: сила притяжения зависит ведь от массы земного шара, уменьшить которую мы не в состоянии. Однако это не так. Речь идет о напряжении тяжести на поверхности нашей планеты, а оно, как известно, зависит не от одной лишь массы, но и от расстояния до центра земного шара, т. е. от величины земного радиуса. Если бы мы могли разрыхлить земной шар настолько, чтобы, увеличившись в объеме, он приобрел радиус, например, вдвое больше, чем теперь, то напряжение тяжести на поверхности такого шара стало бы вчетверо меньше. В самом деле: находясь на поверхности Земли, мы были бы вдвое дальше от притягивающего центра (шарообразные тела притягиваются так, словно вся их масса сосредоточена в центре). Выгода от подобного переустройства обитаемой нами планеты получилась бы еще и та, что поверхность земного шара увеличилась бы в четыре раза. Людям жилось бы на Земле буквально вчетверо «свободнее» и вчетверо «легче»…

Разумеется, современная и даже будущая техника не в состоянии осуществить ничего подобного.

Механика указывает и другой путь к ослаблению земной тяжести. Он состоит в том, чтобы ускорить быстроту вращения Земли вокруг оси. Уже и теперь центробежный эффект вращения земного шара уменьшает вес каждого тела на экваторе на 1/290 долю. В соединении с другой причиной (вздутием земного шара у экватора) вращение Земли действует так, что все тела на экваторе весят на 0,5 % меньше, чем близ полюсов. Паровоз, весящий в Москве 60 т, становится по прибытии в Архангельск на 60 кг тяжелее, а в Одессу – на столько же легче. Партия угля в 5000 т, доставленная со Шпицбергена в экваториальный порт, уменьшилась бы в весе на 20 т, если бы приемщику пришла фантазия принять груз, пользуясь пружинными весами, выверенными на Шпицбергене. Линкор, весящий в Архангельске 20 000 т, становится по прибытии в экваториальные воды легче на 80 т; но это, конечно, неощутительно, так как соответственно легче делаются и все другие тела, не исключая и воды в океане. Разницу веса похищает главным образом центробежный эффект: на экваторе он несколько больше, чем в удаленных от него широтах, где точки земной поверхности при вращении Земли описывают гораздо меньшие круги.

Нетрудно доказать, что если бы Земля вращалась в 17 раз быстрее, чем теперь, то центробежный эффект на экваторе увеличился бы в 17 × 17, т. е. почти в 290 раз. Вспомнив, что теперь центробежный эффект похищает у тел как раз 1/290 долю их веса, вы поймете, что на экваторе столь быстро вращающейся Земли тела совсем не имели бы веса. Стоило бы тогда лишь достичь экватора, чтобы, слегка оттолкнувшись там, ринуться в мировое пространство. Задача звездоплавания разрешалась бы крайне просто. А если бы Земля вращалась еще быстрее, мы сделались бы небесными странниками поневоле, так как инерция при вращении сама отбросила бы нас в бездонную глубь неба. Людям приходилось бы задумываться уже над проблемой «земных», а не межпланетных странствований…

Но мы чересчур далеко забрели в область фантазии. Все сказанное лежит, конечно, за гранью достижимого. Если бы в наших силах и была возможность ускорить вращение земного шара, то, вертясь достаточно быстро,

Земля расплющилась бы (в плоскости своего экватора), а быть может, даже еще ранее разлетелась бы на части, как чересчур быстро заверченный жернов. Возможность путешествовать в межзвездных пространствах приобретена была бы слишком дорогой ценой…

Глава 5. Вопреки тяжести – на волнах света

Из трех мыслимых способов борьбы с тяготением мы рассмотрели и отвергли два: способ защиты от тяготения и способ ослабления земной тяжести. Ни тот, ни другой не дают надежды успешно разрешить заманчивую проблему межпланетных перелетов. Бесплодны всякие попытки укрыться от силы тяготения; безнадежно стремление ослабить напряжение тяжести. Остается одно: вступить с тяготением в борьбу, искать средство преодолеть его и покинуть нашу планету вопреки притяжению.

Проектов подобного рода существует несколько. Они, без сомнения, интереснее всех других, так как их авторы не измышляют фантастических веществ вроде «экрана тяготения», не предлагают переделать земной шар или изменить скорость его вращения.

Один из проектов рассматриваемой категории предлагает воспользоваться для межпланетных перелетов давлением световых лучей. Лицам, мало знакомым с физикой, должно казаться невероятным, что нежные лучи света оказывают давление на озаряемые ими предметы. Между тем одной из величайших заслуг нашего гениального физика П.Н. Лебедева было то, что он на опыте обнаружил и измерил отталкивающую силу лучей света.

Всякое светящееся тело, будь то свеча на вашем столе, электрическая лампа, раскаленное Солнце или даже темное тело, испускающее невидимые лучи, давит своими лучами на озаряемые тела. П.Н. Лебедеву удалось измерить силу давления, оказываемого солнечными лучами на освещаемые ими земные предметы: в мерах веса она составляет около 1/2 мг для площади в квадратный метр. Если умножить полмиллиграмма на площадь большого круга земного шара, мы получим для давления солнечных лучей на Землю весьма внушительный итог: около 60 000 т.

Такова величина силы, с которой Солнце давлением своих лучей постоянно отталкивает нашу планету. Сама по себе взятая, сила эта велика. Но если сравнить ее с величиною солнечного притяжения, то окажется, что отталкивание в 60 000 т не может иметь заметного влияния на движение земного шара: сила эта в 60 биллионов раз слабее солнечного притяжения. Далекий Сириус, от которого свет странствует к нам 8 лет, притягивает Землю с гораздо большей силою – 10 миллионов тонн, а планета наша словно не чувствует этого. Не забудем, что 60 000 т – это вес только одного большого океанского парохода. (Вычислено, что под давлением солнечных лучей земной шар должен удаляться от Солнца на 21/2 мм в год).

Однако чем тело меньше, тем большую долю силы притяжения составляет световое давление. Вы поймете, почему это, если вспомните, что притяжение пропорционально массе тела, световое же давление пропорционально его поверхности. Уменьшите мысленно земной шар так, чтобы поперечник его стал вдвое меньше. Объем, а с ним и масса Земли уменьшается в 2 × 2 × 2 = 8 раз, поверхность же уменьшится лишь в 2 × 2 = 4 раза; значит, притяжение ослабнет в 8 раз, пропорционально уменьшению массы; световое же давление уменьшится соответственно поверхности, т. е. всего лишь в 4 раза. Вы видите, что притяжение ослабело заметнее, чем световое давление. Уменьшите Землю еще вдвое – получится снова выгода в пользу светового давления.

Если будете продолжать и далее это неравное состязание кубов с квадратами, то неизбежно дойдете до таких мелких частиц, для которых световое давление наконец сравняется с притяжением. Подобная частица не будет уже приближаться к Солнцу – притяжение уничтожится равным отталкиванием. Вычислено, что для шарика плотности воды это должно иметь место в том случае, если поперечник его немного менее тысячной доли миллиметра.

Ясно, что если подобный шарик будет еще меньше, то световое отталкивание превзойдет силу притяжения и крупинка будет уже стремиться не к Солнцу, а от Солнца. Чем крупинка меньше, тем сильнее должна она отталкиваться от Солнца. Перевес светового давления над тяготением, конечно, выражается ничтожной величиной, но ведь и ничтожность относительна. Масса пылинки, которую эта сила движет, также чрезвычайно мала; и мы не должны удивляться тому, что маленькая сила сообщает весьма маленькой массе огромную скорость – в десятки, сотни и тысячи километров в секунду…[6]

вернуться

6

«Однако закон обратной пропорциональности радиусу не имеет больше силы, когда радиус становится слишком малым в сравнении с длиной волны отталкивающих световых лучей: при некотором радиусе, близком к 0,0001 мм, отношение давления к притяжению начинает быстро уменьшаться» (Пойнтинг).

5
{"b":"181198","o":1}