Цель применения цитостатиков в химиотерапии опухолей понятна: нужно любыми способами остановить безудержные митозы в опухолях, задержать их рост и помочь организму справиться с постигшим его недугом. Теоретическим обоснованием к применению цитостатиков является тезис, утверждающий, что малодифференцированные опухолевые клетки более чувствительны к низким концентрациям этих веществ, чем нормальные клетки.
У цитостатиков есть одно преимущество — клиницисты и экспериментаторы могут их получать в чистом виде, знают их химический состав. Знают, на какую фазу митоза они могут воздействовать. Удалось даже получить цитостатики с высокой избирательностью по отношению к типу клеток. Например, ТЭФА — триэтилен-фосфамид подавляет митозы в лимфоидных тканях, а миелобромол — в миелоидных тканях, которых много в нервных узлах, в мозге. Казалось бы, уже можно бороться со злокачественными опухолями, но на пути этой борьбы встают отрицательные свойства цитостатиков.
Во-первых, к этим же цитостатикам чувствительны нормальные делящиеся клетки, и применение эффективных доз ограничивается из-за их побочного действия. А во-вторых, введение цитостатиков, особенно повторное, может привести к отбору. Среди злокачественных клеток появляются клетки, способные не реагировать на эти лекарственные вещества, и опухоли из таких клеток быстро разрастаются, окончательно поражая организм.
По этой причине ученые, занимающиеся проблемой регуляции клеточных делений, ищут химические вещества, действующие на клетки выборочно и мягко. Но ведь такие вещества есть в самом здоровом организме, где постоянно происходит регуляция как ингибирования, так и стимуляции митозов. Может быть, их можно выделить из тканей и применить для исправления работы поломанной машины, ведающей командами для делящихся и неделящихся клеток?
Ученых всегда интересовали такие факты в клеточном делении, на которые трудно найти ответ. В самом деле, почему клетки после нанесения травмы начинают усиленно делиться и закрывают полученный дефект? И была создана теория раневых гормонов. Смысл ее сводится к тому, что из разрушенных клеток в окружающую ткань разливается вещество, которое играет роль сигнала, побуждающего клетки вокруг травмы к делению. Возникает и второй вопрос: почему после закрытия травмы клеточные деления прекращаются, а в злокачественной опухоли они бушуют безостановочно, пока живет сам организм?
Здесь мы вплотную подошли к теории кейлонов, разработанной известным биологом В. Буллоу. Кейлоны — полная противоположность раневым гормонам: они ингибиторы и ограничители роста. Деление клеток строго контролируется ими. Когда орган вырастает до нужных размеров, в нем как раз необходимая концентрация кейлонов. Но стоит нанести травму, то есть уменьшить количество клеточных ингибиторов, как клетки усиленно начинают делиться. И это продолжается до тех пор, пока рана не закроется, а количество кейлонов при этом придет в норму.
Буллоу и Лауренс провели ряд интересных опытов, чтобы до-казать действенность своей теории. Вот один из экспериментов, проведенных ими ради выбора между теорией раневых гормонов и теорией кейлонов. Все, наверное, представляют, как тонки уши у мыши. Если у нее удалил, эпидермис с одной стороны, то через тонкое ухо химическое воздействие будет оказано и на другую сторону, и клетки на неповрежденной стороне начнут усиленно делиться. Теперь только останется пронаблюдать, какую же картину образуют клетки кожицы неповрежденной стороны уха, приступившие к митозу. Если будут действовать раневые гормоны, то на другую сторону они диффундируют из краев экспериментальной раны, следовательно, на другой стороне уха в коже митозы как бы дадут конфигурацию травмы. И совсем другое дело будет при нехватке кейлонов: если они частично уйдут при уменьшении концентрации в области травмы, то получится как бы обратная диффузия из неповрежденного эпителия кожи. Митозы, конечно, в этом случае появятся на неповрежденной стороне не в виде кольца, а примерно на той же площади, напротив которой снят эпителий. Поставили эксперимент — и подтвердилось последнее.
Подтверждение присутствия ингибитора в клетках эпидермиса кожи вдохновило ученых на дальнейшие исследования. Они получили экстракты, выделенные из кожи, и нашли, что кейлон представляет собой гликопротеид с молекулярной массой около 30 000-40 000. Дальнейшие исследования дали не менее интересные результаты. Оказалось, что кейлон не имеет видовой специфичности. Зато он органоспецифичен, действует только на митотическую активность того органа, из которого он выделен. В частности, митозы в ухе мыши могут быть приостановлены не только экстрактами, выделенными из кожи мыши, но и препаратами, выделенными из кожи свиньи, из кожи пальца человека и даже из кожи трески.
Вот какие возможности открываются для регуляции митозов как в здоровых, так и в раковых тканях. Огромное количество лабораторий мира начало заниматься изучением кейлонов. Начались поиски кейлонов в других органах, выделение кейлонов в чистом виде самыми современными методами биохимии. Ученые начали искать, на какую стадию клеточного цикла действуют эти вещества.
Познакомимся с некоторыми теориями в области онкологии, основанными на принципе приемника и передатчика.
1. Живые клетки снижают или совершенно прекращают выработку кейлонов. Они получают сигнал к делению и начинают давать беспорядочные митозы, порождая все новые и новые группы клеток, не способных вырабатывать кейлоны.
2. В клетках происходит мутация, небольшая поломка в рецепторе, анализирующем присутствие кейлонов. Хотя «антенны» клетки и настроены на прием кейлонов, сигнала об их присутствии вокруг себя она не слышит. Результат тот же — начинается безудержный автономный рост.
Если первый довод правилен, то все опухоли, клетки которых сохранили работоспособные рецепторы приема кейлонов, можно излечить. Нужно только ликвидировать недостаток кейлонов в ткани. Такие опухоли нашли. Оказалось, что VX— опухоль у кролика, хлоролейкемия и меланомы у хомячка излечиваются экстрактами, выделенными из кожи свиньи. Появилась надежда. Однако вскоре она начала угасать. Излечить кейлонами можно было только те опухоли, которые зависят от них, а их не так уж много. Такие клинически важные опухоли, как рак кожи и рак легкого, устойчивы по отношению к эпидермальному кейлону и не реагируют на него. Может быть, здесь уже поломались рецепторы клетки?
Живым клеткам нужно всегда знать, где находятся их сородичи, и получать сигналы о состоянии дел в организме. Поэтому они всегда обмениваются информацией. За обменом сигнальной информацией у клеток эпидермиса кожи очень просто и в то же время изящно удалось проследить японским исследователям Фуджи и Мицуно. Они имплантировали в эпидермис кусочки миллипорового фильтра и отделяли одни клетки от других. Но клетки «слушали» друг друга через фильтр, через мельчайшие поры поступали сигналы. В тех случаях, когда фильтр пропитывали парафином, связь между клетками через поры нарушалась. Клетки начали расти вниз, пока не приходили в контакт и не начинали обмениваться информацией (рис. 10).
Рис. 10. Обмен информационными сигналами между клетками эпидермиса при наличии мембранного фильтра и при воздействии канцерогеном
А после обработки клеток канцерогенными веществами они вели себя у перегородки так же, как и при непроницаемом фильтре. Фильтр имел поры, но клетки все равно шли для контакта вниз. Разве это, не доказательство того, что вещество, выбывающее опухоль, либо влияет на выработку кейлонов, либо портит рецепторы на клеточных мембранах.
В настоящее время предполагается несколько пересмотреть принцип регуляции клеточных делений в тканях химическими веществами, появляются сообщения не только об ингибиторах, *о и о стимуляторах митозов, выделенных из тканей. Это значительно приближает к истинному положению вещей. В действии и Противодействии совершаются многие физиологические процессы.