Литмир - Электронная Библиотека
A
A

В восточной части штата Колорадо (США) ежегодно происходит около шести градобитий, и каждое из них приносит огромные убытки. Сильные градобития случаются на Северном Кавказе, в Грузии, Армении, в горных районах Средней Азии. Вот одно из лаконичных сообщений метеостанции Нальчика: «С 9 на 10 июня 1939 года… выпал град величиной с куриное яйцо, сопровождающийся сильным ливнем. В результате погибло свыше 60 тысяч га пшеницы и около 4 тысяч га других культур; было убито около 2 тысяч овец».

Давно подмечено, что есть районы, которые из года в год страдают от града. Некоторые земледельцы даже убеждены, что на отдельных полях градом непременно выбьет посевы, в то время как соседний участок не пострадает. Для жителей Англии град — большая редкость, а французские виноградари, живущие по другую сторону Ла-Манша, проклинают его несколько раз в год. В тропиках град почти никогда не выпадает, хотя грозы там полыхают часто. Так, в Браззавиле за год бывает до 60 гроз, однако за всю историю города град там ни разу не зарегистрирован.

Когда рассказывают о выпавшем граде, прежде всего отмечают размеры градин. Они обычно все разные по величине. Обращают на себя внимание самые крупные. Так мы узнаем о совершенно фантастических градинах. В Индии и Китае известны случаи падения с небес ледяных глыб весом 2–3 килограмма. Рассказывают даже, что в 1961 году в Северной Индии тяжелая градина убила слона. В наших умеренных широтах наблюдались градины весом около килограмма. Известен случай, когда в Воронеже град разломал черепицу на крыше дома, пробил металлическую крышу автобуса. Это косвенные признаки, по которым тоже судят о величине градин. Иногда удается сделать фотоснимки с масштабом — рядом с градиной помещают предмет хорошо известных размеров (монету, часы, спичечный коробок, а еще лучше — линейку).

Одна из градин, сфотографированная в США, имела диаметр 12 см, 40 см в окружности и весила 700 г. Во Франции зарегистрированы удлиненные градины величиной примерно с ладонь (15x9 см). Вес отдельных градин достигал 1200 г! И таких градин на один квадратный метр выпало штук по 5–8. Так что древние летописцы, возможно, не очень преувеличивали увиденное.

Во все времена самый большой ущерб град причинял сельскому хозяйству. Поэтому с очень давних времен люди начали искать средства борьбы с этим стихийным бедствием. Геродот рассказывает о том, как фракийцы пускали стрелы в градовые облака. Конечно, это был жест отчаяния. И в более поздние века по облакам стреляли из ружей, из пушек. Но стреляющие не представляли, что, собственно, должен сделать снаряд с облаком. И даже уже в XX веке попытки использовать для борьбы с градовым облаком современнейшую технику — авиацию и ракеты — заканчивались безрезультатно. Известно, что в Италии в сезон 1955 года было выпущено по облакам, несущим град, около ста тысяч ракет.

А каков механизм образования града? Гипотезы по этому поводу еще в первой половине XVII века строил Декарт, Однако научную теорию градовых процессов и методов воздействия на них создали физики совместно с метеорологами лишь в середине прошлого века.

Град образуется в мощном кучевом облаке при сильных восходящих потоках воздуха. Скорость их обычно превышает 15 м/с (средняя скорость пассажирского поезда). На этих потоках поддерживаются крупные переохлажденные (до -10…-20 °C) капли воды. Чем выше, тем меньше скорость воздушных потоков, тем труднее им удерживать капли. На высоте 8—10 км, где температура достигает — 35…- 40 °C, капли замерзают, образуются ледяные частички — зародыши градин. Ударяясь друг о друга, сталкиваясь с еще не успевшими замерзнуть переохлажденными каплями, они примораживают их к себе, увеличиваются, тяжелеют и опускаются в более низкие облака, где переохлажденных капель еще больше. Чтобы «набрать» в диаметре 1 см, каждая градина должна испытать примерно 100 миллионов столкновений с облачными капельками. Далее выпадение града происходит лавинообразно. За считанные минуты град покрывает землю ледяными шариками слоем 5–7 см. В районе Кисловодска в 1965 году выпал град, покрывший землю слоем в 75 см!

Как бороться с градом? Подсчитано, что на создание летнего кучевого облака природа «затрачивает» миллионы киловатт. Поневоле задумаешься: есть ли сила, способная его разрушить? К счастью, как выяснили метеорологи, разрушать облака и не требуется. Атмосферные процессы иногда находятся в столь неустойчивом состоянии, что при сравнительно небольшом вмешательстве можно подтолкнуть их ход в желаемом направлении.

Именно этого и добиваются метеорологи, штурмующие облака. Размеры градовых облаков огромны, иногда несколько тысяч квадратных километров, попасть снарядом в такую цель нетрудно, но и результат от этого ничтожен — не более чем слону дробина. Нужно было найти уязвимое место — «ахиллесову пяту» гигантского облака.

Эту сложную научную задачу решили ученые из высокогорного Геофизического института в городе Нальчик. Расчеты и эксперименты метеорологов и физиков показали, что град зарождается в сравнительно небольшой (20–30 км3), так называемой крупнокапельной зоне облака, и именно на нее надо «нажать». Но как это сделать? Самый эффективный способ — искусственно создать большое количество зародышей града. Каждый «новорожденный» будет перехватывать капельки переохлажденной воды, а запасы ее в облаке ограничены. Поэтому каждый из зародышей препятствует росту другого, и градины получаются небольшие. Такой град, выпадая на землю, не принесет серьезного урона, а очень возможно, что вместо града пройдет ливень. Это уже победа! Искусственные зародыши града создаются, когда в переохлажденную часть облака вносят сухую углекислоту или йодистое серебро, свинец. Один грамм создает 1012 (триллион) ледяных кристаллов.

Трудность в том, чтобы определить градовую зону в облаке и вовремя распылить там реагенты. В целом вся борьба с градом напоминает противовоздушную оборону. Радиолокаторы обнаруживают градовое облако почти за 40 км до защищаемых территорий. Градовые облака развиваются очень быстро. Весь процесс образования града занимает 30–40 минут, поэтому воздействовать на облако надо не позже чем через 15–20 минут после начала его бурного развития. Уточняют координаты крупнокапельной зоны и пускают в ход зенитные орудия, снабженные специальными снарядами или ракетами. Дальность действия ракет — 10 км.

Атмосферные вихри

Облака являются спутниками атмосферных вихрей. А вихревые образования, в свою очередь, могут порождать дискоидные образования. Такие дискоидные образования часто принимаются за летящие по небу рукотворные объекты, а наблюдатели могут свидетельствовать в пользу появления НЛО. Плотный вид дискоидного образования, иногда даже металлический оттенок его поверхности связаны с тем, что внутри такого аномального явления в атмосфере находятся частички аэрозоля, уменьшающие его прозрачность. Ученые А. С. Монин и Г. П. Баренблатт, занимающиеся оптическими явлениями, считают, что дискоидные образования могут наблюдаться в жидкой и газообразной среде. Там могут создаваться условия для образования и разрушения волн. Такие волны хорошо изучены в метеорологии и океанологии.

Атмосферные вихри являются причиной не только панического страха, но и любопытства тех, кому довелось их увидеть на небе. Сила смерча поражает воображение. Известный американский писатель Томас Хелм сказал: «Ураганы — худший вид погоды». Но поскольку рассказ о небесных чудесах не может миновать таких природных явлений, как быстрое рождение в атмосфере вихревых структур, познакомимся подробнее с тем, какими они бывают. Есть явление, которое в своем названии имеет прямое указание на то, в чем причина его катастрофического воздействия. Название торнадо произошло от испанского слова торнадос, т. е. вертящийся.

Торнадо и ураган — это два различных типа бурь. Условия, необходимые для образования одного, не способствуют формированию другого. Но торнадо могут появляться и в урагане. Тогда возникают небольшие области жестоких разрушений. Если ураган можно назвать самым мощным природным вихрем, то торнадо — это самый бурный и стремительный тип вихря из всех, создаваемых природой.

33
{"b":"166459","o":1}