Литмир - Электронная Библиотека
Содержание  
A
A

Но коль скоро математику надлежит рассматривать как одну из естественных наук, важно досконально представить себе, как устроены и как работают естественные науки. В любой такой науке производят наблюдения над природными явлениями или ставят специально организованные эксперименты, а затем на основании полученных результатов строят теории — движения, света, звука, теплоты, электричества, химического строения вещества и т.д. Все эти теории созданы человеком, и правильность их оценивается по соответствию сделанных на их основе предсказаний с последующими наблюдениями и экспериментами. Если предсказания подтверждаются (во всяком случае, в пределах ошибки эксперимента), то теория считается верной. Тем не менее впоследствии такая теория может быть опровергнута; поэтому ее всегда надлежит рассматривать как «полуэвристическую» теорию (где, впрочем, доли «теоретичности» и «эвристичности» могут варьироваться в весьма широких пределах), а не как абсолютную истину, входящую неотъемлемой составной частью в структуру физического мира. Мы привыкли к подобному взгляду на естественнонаучные теории, поскольку нам неоднократно приходилось быть свидетелями того, как одни естественнонаучные теории (корпускулярная теория света, флогистон, эфир, в какой-то степени даже ньютонова механика и волновая теория света Гюйгенса) опровергались и уступали место новым теориям. {175}Единственная причина, по которой подобный взгляд не распространялся на математику, состояла, как отметил Милль, в том, что элементарная арифметика и евклидова геометрия сохраняли эффективность на протяжении многих веков и люди ошибочно приняли эту эффективность за абсолютную истинность. {176}Однако не следует упускать из виду, что любая область математики предлагает только такую теорию, которая дееспособна. Покуда она эффективна, мы можем следовать ей, но впоследствии нам, возможно, понадобится более усовершенствованный вариант теории. Математика выполняет миссию посредника между человеком и природой, между внутренним миром человека и тем, что его окружает. Математика — это отличающийся необычайной смелостью линий грандиозный мост между нами и внешним миром. Горько сознавать, что концы его не закреплены ни в реальности, ни в умах людей.

Разум обладает способностью прозревать истину только в том, что строит по собственному плану и, хотя начать построение он может, руководствуясь своими идеями, на более позднем этапе ему необходимо с помощью эксперимента выведать у природы, насколько удачны предложенные им идеи. Вот тогда и наступает время для теории и для проверки ее соответствия реальному миру. В основном математика отличается от естественных наук одной особенностью: в то время как в физике на смену одним теориям приходили другие, радикально новые, в математике значительная часть логики, теории чисел и классического анализа успешно функционировали на протяжении многих веков. Более того, они применимы и поныне. Независимо от того, являются ли названные выше составные части математики абсолютно надежными или нет, они отлично нам служат — у нас нет ни оснований, ни права усомниться в них. Все эти разделы математики можно было бы назвать «квазиэмпирическими», ибо эмпирические их истоки потонули в глубине веков и для нас почти неразличимы.

В подтверждение сказанного приведем пример из истории дифференциального и интегрального исчисления. Несмотря на несмолкавшие споры о логических основах исчисления, как методология оно оказалось вполне успешным. По иронии судьбы именно теория бесконечно малых Лейбница (а не весь аппаратматематического анализа) во второй половине нашего столетия неожиданно получила строгое обоснование (так называемый нестандартныйанализ; см. гл. XII).

Критерием применимости к внешнему миру можно воспользоваться даже для проверки аксиомы выбора. Сам Цермело в работе 1908 г. утверждал: «Каким образом Пеано приходит к своим основополагающим принципам… если в конечном счете он не может их доказать? Ясно, что он получает их, анализируя способы логического вывода, признанные правильными в ходе исторического развития, и отмечая, что эти принципы интуитивно очевидны и необходимы для науки…» Отстаивая правомерность использования аксиомы выбора, Цермело ссылался на успехи, достигнутые с помощью этой аксиомы. В работе 1908 г. он отметил, сколь полезной оказалась (даже тогда) аксиома выбора в теории трансфинитных чисел, в теории вещественного числа Дедекинда (см. [46] и [47]) и в решении более специальных проблем анализа.

Лидеры различных математических школ и направлений, рекомендуя использовать приложения к естественным наукам как путеводную нить и критерий доброкачественности математики, руководствуются не только желанием выбрать одно из течений в основаниях математики. Все они сознают, что силы математики в решении физических проблем неизмеримо возросли, и считают недопустимым игнорировать услуги, оказываемые математикой человечеству в познании мира, только потому, что сохранились разногласия в основаниях математики. Хотя многие математики на протяжении без малого последних ста лет и перестали заниматься естественнонаучными приложениями, величайшие из математиков XX в. — Пуанкаре, Гильберт, фон Нейман и Вейль — внесли существенный вклад в современную физику.

К сожалению, большинство математиков — в силу указанных ранее (гл. XIII) причин, которые следует считать скорее предосудительными, чем похвальными, — и поныне не работают в области приложений своей науки; вместо этого они продолжают во все возрастающем темпе создавать все новые теоремы чистой математики. Некоторое представление о размахе современных исследований по (чистой и прикладной) математике можно получить по журналу Mathematical Review {177}, печатающему краткие рефераты наиболее значительных новых работ, — ежемесячно в этом журнале публикуется около 2500 рефератов, т.е. около 30 000 рефератов в год.

Можно было бы думать, что тупик, в который зашел нескончаемый спор о том, какую именно математику можно считать «правильной» и какая школа математической мысли является наиболее последовательной, а также множество направлений, по которым математика может далее развиваться (даже оставаясь в рамках одного и того же течения в области оснований), позволит чистым математикам воспользоваться «паузой» и переключиться на решение проблем, связанных с основаниями математики, вместо того чтобы достраивать в разных направлениях здание математической науки, игнорируя шаткость фундамента и рискуя тем, что новые теоремы могут оказаться логически неверными. Но этого не происходит, так что математики пренебрегают как философскими вопросами оснований, так и критерием практической приложимости. Почему же они так охотно работают в областях математики, далеких от приложений?

Это объясняется несколькими причинами. Многие математики ничего не знают о работах по основаниям математики. Стиль деятельности, выработавшийся у математиков XX в., типичен для подхода наших современников ко многим проблемам. Почти каждый математик работает в своем уголке на каком-то этаже огромного здания математики. Покуда те, кто занимается основаниями математики, копают все глубже и глубже, дабы придать зданию устойчивость, обитатели верхних этажей продолжают оставаться на своих рабочих местах и выполнять свои функции. Специалисты по основаниям математики зарылись в землю так глубоко, что их просто не видно. Работающие в здании даже не знают, что кто-то заботится о его устойчивости, и не подозревают, что оно может рухнуть. Без тени сомнения они спокойно продолжают пользоваться традиционной математикой. Пребывая в счастливом неведении о вызовах, бросаемых господствующей доктрине, они трудятся в рамках этой доктрины, не интересуясь ни ее обоснованием, ни дополнительными подкреплениями, коими может служить критерий практики. Другие математики прекрасно осведомлены о разногласиях и пробелах в основаниях математики, но предпочитают держаться в стороне от этих, как они называют, философских (в отличие от чисто математических) проблем. Таким математикам трудно поверить в существование сколько-нибудь серьезных проблем, связанных с основаниями математики, по крайней мере таких, которые касались бы их собственной деятельности. Они предпочитают оставаться верными обветшалому символу веры. Их неписаный девиз гласит: будем действовать так, словно за последние семьдесят пять лет ничего не произошло. Они говорят о доказательстве в некотором общепринятом смысле, хотя этот «зверь» не то что занесен в «Красную книгу», но просто давно вывелся, пишут и публикуют работы, словно никаких разногласий по поводу оснований математики не было и в помине. Единственное, что их интересует, — это число новых публикаций. Чем больше, тем лучше. Если «прагматики» и заботятся о надежных основаниях, то исключительно по воскресеньям, и даже в эти дни они либо возносят молитвы об отпущении грехов, либо воздерживаются от писания новых статей только для того, чтобы почитать, чем занимаются их соперники. Личное преуспевание — превыше всего, а будут ли основания математики надежными, не так уж важно.

вернуться

175

При этом, разумеется, следует различать, скажем, опровержениятеорий флогистона или эфира, полностью отброшенные современной наукой, и уточнения ньютоновской механики и гюйгенсовской оптики, не отменяющие, а лишь дополняющие эти выдающиеся достижения науки XVII в.

вернуться

176

По поводу возможных вариантов геометрической структуры физического пространства, отличных от классической геометрии Евклида, см. гл. IV. Что касается случаев, в которых может оказаться неприемлемой обычная арифметика, то здесь можно, например, порекомендовать читателю неконкретную, но весьма выразительно написанную заметку [30].

вернуться

177

Сходные результаты может дать анализ русского РЖ «Математика» или немецкого (ГДР / ФРГ) журнала Zentralblaft für Mathematik.

124
{"b":"149325","o":1}