Литмир - Электронная Библиотека
Содержание  
A
A
Математика. Утрата определенности. - i_052.jpg

История математики знает не только величайшие взлеты, но и глубокие падения. Потеря истины, бесспорно, может считаться подлинной трагедией, ибо истины — драгоценнейшее из достояний человечества, и утрата даже одной из них — более чем основательная причина для огорчения. Осознание того, что сверкающая великолепием витрина человеческого разума далеко не совершенна по своей структуре, страдает множеством недостатков и подвержена чудовищным противоречиям, могущим вскрыться в любой момент, нанесло еще один удар по статусу математики. Но бедствия, обрушившиеся на математику, были вызваны и другими причинами. Тяжелые предчувствия и разногласия между математиками были обусловлены самим ходом развития математики за последние сто лет. Большинство математиков как бы отгородились от внешнего мира, сосредоточив усилия на проблемах, возникавших внутри самой математики, — по существу, они порвали с естествознанием. Это изменение в развитии математики нередко описывают как обращение к чистойматематике, противопоставляемой прикладнойматематике (ср., например, [97]). Но оба термина — прикладная математика и чистая математика, — хотя мы также будем ими пользоваться, не вполне точно передают суть происходившего.

Что представляла собой математика? Для предыдущих поколений математика была прежде всего и главным образом тончайшим творением человеческого разума, предназначенным для исследования природы. Фундаментальные понятия, универсальные методы и почти все наиболее важные теоремы математики были разработаны и доказаны именно в процессе усовершенствования математики как инструмента познания мира. Естествознание было кровью и плотью математики и питало ее живительными соками. Математики охотно сотрудничали с физиками, астрономами, химиками и инженерами в решении различных научно-технических проблем, а часто и сами являлись выдающимися физиками и астрономами. В XVII-XVIII вв., а также на протяжении большей части XIX в. различие между математикой и теоретическим естествознанием отмечалось крайне редко. {150}Многие ведущие математики, работая в области астрономии, механики, гидродинамики, электромагнетизма и теории упругости, получили здесь несравненно более важные результаты, чем в собственно математике. Математика была царицей и одновременно служанкой естественных наук.

Мы уже рассказывали (гл. I-IV) о нескончаемых усилиях, которые с античных времен предпринимало человечество, чтобы выведать у природы ее «математические тайны». Столь высокая приверженность изучению природы отнюдь не ограничивала прикладную математику решением лишь физических проблем. Великие математики нередко выходили за рамки тех проблем, которые стояли перед естествознанием их времени. А поскольку они действительно были великими и полностью сознавали традиционную роль своей науки, им удавалось наметить направления исследований, которые оказывались немаловажными для теоретического естествознания или проливали свет на понятия, уже применявшиеся для исследования природы. Так, Пуанкаре, многие годы посвятивший астрономии (его перу принадлежит фундаментальный трехтомный труд «Новые методы небесной механики»), считал необходимым разрабатывать те вопросы теории дифференциальных уравнений, которые могли способствовать дальнейшему развитию астрономии.

Некоторые математические работы дополняли или завершали исследования, полезность которых была установлена ранее и ни у кого не вызывала сомнений. Так, совершенно очевидно, что если дифференциальные уравнения одного и того же типа неоднократно встречаются в приложениях, то разумно изучить дифференциальное уравнение общего вида, охватывающее все частные случаи. Это позволяет разработать более удобный или отличающийся большей общностью метод решения, а также получить наибольшее количество сведений о всем классе решений. Одна из отличительных особенностей математики, ее абстрактность, позволяет описывать на математическом языке самые различные физические явления. Так, волны на воде, звуковые и радиоволны математика описывает одним и тем же дифференциальным уравнением, известным под названием волнового уравнения.Те дополнительные сведения, которые математик обнаруживает, исследуя волновое уравнение (впервые выведенное при изучении звуковых волн), могли оказаться (и действительно оказывались) весьма полезными при решении, например, некоторых задач из теории радиоволн. Распознавание за внешне различными явлениями тождественных математических структур позволяет упрочить и понять многообразие теоретических построений, вызванных к жизни проблемами познания реального мира, и установить общую абстрактную основу описания таких явлений.

Доказательство теорем существования решений дифференциальных уравнений, впервые предпринятое Коши, должно было отмести все сомнения в том, что физические проблемы, сформулированные на языке математики, допускают решение, и тем самым вселить уверенность в том, что поиск этих решений будет не напрасным. Так чисто математические работы, посвященные доказательству теорем существования, облекались физической плотью. Стимулом для работ Кантора по теории бесконечных множеств, породивших обширную литературу, было стремление ответить на некоторые вопросы теории бесконечных рядов — так называемых рядов Фурье {151}, которые широко использовались в разного рода приложениях.

Развитие математики приводило к постановке и настоятельному поиску решения проблем, не связанных непосредственно с проблемами естествознания. Так, в XIX в. (гл. VIII) математики поняли, что определения многих понятий страдают расплывчатостью, а в математических рассуждениях и доказательствах немало пробелов. Движение за математическую строгость, принявшее необычайно широкий размах, не ставило целью решение каких бы то ни было естественнонаучных проблем, как не преследовали такой цели и позднее возникшие различные школы, пытавшиеся перестроить основания математики. И все же гигантская работа по перестройке оснований математики, производимая в интересах самой этой науки, несомненно, явилась откликом на насущные проблемы не только чистой, но и прикладной математики.

Многие чисто математические работы дополняют и подкрепляют своими результатами старые, хорошо разработанные области математики или способствуют открытию новых направлений, которые обещают стать важными для различных приложений. Такого рода работы можно рассматривать как прикладную математику в самом широком смысле.

Но разве сто лет назад и ранее, спросит читатель, не было математики, созданной лишь ради нее самой, безотносительно к каким бы то ни было приложениям? Разумеется, была. Великолепный примером чистой математики может служить теория чисел.Хотя пифагорейцы считали, что, изучая целые числа, они постигают сокровенные тайны внутреннего строения материальных объектов (гл. I), впоследствии теория чисел стала совершенно самостоятельной наукой. Одним из первых математиков, изучавших числа «сами по себе», был Ферма. Начало проективной геометрииположили художники эпохи Возрождения, стремившиеся к реализму в живописи, а Жирар Дезарг и Блез Паскаль превратили проективную геометрию в последовательный метод получения новых результатов евклидовой геометрии. Но в XVIII в. работы Дезарга и Паскаля были забыты, а когда в XIX в. математики вновь обратились к проективной геометрии, они занимались ей главным образом из чисто эстетических побуждений, хотя от внимания наиболее проницательных геометров не ускользнули важные связи между проективной и неевклидовой геометриями. Многие проблемы были решены сами по себе только потому, что они заинтересовали кого-то из математиков и тем захотелось испытать свои силы.

Чистая математика, полностью оторванная от запросов естествознания, никогда не находилась в центре забот и интересов математиков. Ей отводилась роль своего рода забавы, отдохновения от гораздо более важных и увлекательных проблем, выдвигаемых естественными науками. Так, создатель теории чисел Ферма большую часть своего времени отдавал разработке аналитической геометрии, решению различных задач математического анализа и оптики (гл. VI). Он попытался заинтересовать теорией чисел Паскаля и Гюйгенса, но потерпел неудачу. {152}В XVIII в. столь абстрактная наука, как теория чисел, привлекала лишь очень немногих математиков.

вернуться

150

Различие между математикой и «теоретическим» естествознанием полностью осознавал Лейбниц. «Универсальная математика, — писал он, — это, так сказать, логика воображения»; предметом ее является «все, что в области воображения поддается точному определению». В XIX в. специфику математики, отличие ее от естественных (и гуманитарных) наук отчетливо понимали, скажем, замечательный немецкий математик Герман Грассман, говоривший, что «чистая математика есть наука особого бытия, поскольку она рождена в мышлении», или один из создателей математической логики англичанин Джордж Буль, еще четче сформулировавший ту же мысль: «Математика изучает операции, рассматриваемые сами по себе, независимо от различных материй, к которым они могут быть приложены». Я. Бойаи (в отличие от Лобачевского или Гаусса) при создании неевклидовой геометрии подходил к ней не как к возможной системе устройства физической Вселенной, а как к чисто логической схеме, «аксиоматизированной структуре», как сказали бы мы сегодня. При этом любопытно отметить, что Лейбниц (в отличие от Ньютона), Грассман, Буль или Я. Бойаи не получили специального математического образования и были полностью свободны от давления сложившихся традиций, что в чем-то, конечно, ограничивало их возможности, но в то же время придавало их мышлению особую свежесть и остроту.

вернуться

151

В применениях математики широко используются степенные рядывида a 0+ a 1x + a 2x 2+ a 3x 3+ …и тригонометрические ряды,или ряды Фурье(скажем, a 0+ a 1cos x + b 1sin x + a 2cos 2x + b 2sin 2x + …).

вернуться

152

В противоположность этому попытки Паскаля заинтересовать Ферма и Гюйгенса теорией вероятностей,в значительной степени созданной этими тремя учеными, оказалась полностью удачными; частично, видимо, это объяснялось тем,что теория вероятностей возникла сразу же как «прикладная» наука (со столь, впрочем, малопочтенной областью применения, как теория азартных игр), а частично, может быть, прозорливой интуицией гениев, «предчувствующих» будущие глубочайшие прикладные возможности создаваемой ими области математической науки.

104
{"b":"149325","o":1}