Литмир - Электронная Библиотека
Содержание  
A
A

Ядерная энергия

Представление об атоме, возникшее в начале XIX столетия, позволило по-новому ответить на вопрос об источнике солнечной энергии. Почти тотчас же внимание физиков было направлено на третью альтернативу, упомянутую ранее. Атомы элемента урана (а также другого тяжелого металла — тория) постоянно излучают α-частицы с колоссальной скоростью — в среднем около 20 000  км/сек. Следовательно, α-частица имеет кинетическую энергию примерно 1,3 ·10 -5 эрг.Поскольку 1 эрг— маленькая величина, возникает искушение пренебречь ее миллионными долями. Однако для энергии, излучаемой одним атомом, величина эта огромна. Чтобы лучше понять сказанное, введем новую единицу энергии, значительно меньшую, чем эрг.

При исследованиях атомных частиц физики обычно разгоняют их до огромных скоростей, подвергая такие частицы действию электрического поля. Сила электрического поля, заставляющая атомную частицу двигаться быстрее и, следовательно, увеличивающая ее кинетическую энергию, измеряется в вольтах.(Эта единица названа по имени итальянского физика Алессандро Вольты, впервые сконструировавшего в 1800 году электрическую батарею.)

Электрон, находясь под действием электрического потенциала в один вольт, получает определенное количество энергии. Такая величина энергии называется электронвольтоми сокращенно обозначается эв.Тысяча электронвольт обозначается кэв,миллион электронвольт — Мэв,миллиард — Бэв(иногда миллиард электронвольт называют гигаэлектронвольтом и обозначают Гэв):

Один злектронвольт равен 1,602 ·10 -12 эрг.Эта величина немногим больше одной триллионной эрга и удобна для выражения изменения энергии атомов и субатомных частиц [10].

Предположим, например, что углерод соединяется с кислородом и образует двуокись углерода. Каждый грамм углерода, соединяясь таким образом, выделяет 7807 кал.Один атом углерода, соединяясь с двумя атомами кислорода при образовании молекулы двуокиси углерода, освобождает немногим более 4 эв.

Это типичная величина энергии, освобождаемая одним атомом в процессе химических реакций. Сравним ее с величиной энергии α-частицы, вылетающей из атома урана. Крошечная величина в 1,3 ·10 -5 эрг,выраженная в электронвольтах, огромна — 8 Мэв.Один атом, испускающий при радиоактивном распаде субатомную частицу, выделяет в два миллиона раз больше энергии, чем такой же атом во время обычной химической реакции. Почему?

Ha этот вопрос можно дать разумный ответ на основе модели строения атома, созданной в XIX веке. Обычные химические реакции связаны с изменением расположения электронов в атоме, а при изменении положения этих легких частиц затрачивается энергия в несколько электронвольт. С другой стороны, радиоактивные превращения, такие, как излучение α-частиц, происходят в результате изменения расположения нуклонов в ядрах. Нуклоны гораздо тяжелее электронов и находятся в невообразимой тесноте. Энергии, удерживающие их, в миллионы раз больше тех, которые удерживают электроны. Когда при перераспределении нуклонов выделяется энергия, она излучается соответственно большими порциями. В этом случае в отличие от обычных химических реакций говорят о ядерных реакцияхи в отличие от обычной химической энергии — о ядерной энергии.Радиоактивность— одно из первых обнаруженных проявлений ядерной энергии.

Тогда, может быть, именно ядерная энергия, о которой не имели понятия во времена Гельмгольца, служит постоянным неисчерпаемым источником солнечной радиации? Спектроскопия достаточно убедительно доказала, что в действительности Солнце состоит в основном из водорода. Что из этого следует?

За короткое время физики подробно изучили ядерные реакции, протекающие на Солнце: насколько они вероятны, какая энергия излучается и т. д. Уже в 1938 году немецкий физик Ганс Альбрехт Бете, работавший в США, вывел цепочку ядерных реакций, которые могут протекать в условиях, существующих внутри Солнца. В результате таких реакций четыре атома водорода превращаются в один атом гелия, при этом выделяется энергия, примерно равная 27,6 Мэв.Если подобные реакции действительно происходят на Солнце, как долго излучало бы оно энергию, если с самого начала состояло только из водорода, который превращался в гелий в количествах, достаточных, чтобы энергия излучалась с необходимой скоростью? Оказывается, около сотни миллиардов лет. Следовательно, ядерная энергия полностью решает вопрос об энергетическом балансе Солнца. Солнцу незачем сжиматься. А геологам и биологам не стоит больше сомневаться относительно возраста Земли.

В настоящее время по максимальным оценкам возраст Земли равен пяти миллиардам лет. Но Солнце излучало энергию с теперешней интенсивностью все это время без заметного изменения своего внешнего вида и без существенных изменений запасов водородного топлива. Фактически так может продолжаться еще десятки миллиардов лет.

Чтобы поставить на этом точку, добавлю, что человечество вскоре научилось само получать ядерную энергию и в конце концов создало водородную бомбу, в которой используются ядерные реакции, аналогичные тем, которые происходят на Солнце.

Глава 4. Связь массы и энергии

Несохранение массы

Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы.Но справедливы ли законы сохранения в невообразимо малом мире атома? Применимы ли одни и те же основные обобщения и к мельчайшим частицам вещества и к очень большим телам?

Кажется, да. Например, быструю α-частицу можно сделать в некотором смысле видимой, если пропустить ее через камеру Вильсона,— камеру с пересыщенным водяными парами газом. Пересыщенный газ содержит больше водяных паров, чем при обычных условиях. Этот пар стремится выделиться в виде капель жидкости. Такие капельки наиболее легко образуются около мелких твердых частиц, которые притягивают молекулы воды или которые имеют такую форму, что молекулы воды легко садятся на них. Это — центры конденсации.Обычно воздух содержит пылинки, крупинки соли морской воды и другие материальные частицы, которые могут служить подобными центрами. Если таких центров конденсации нет пар не будет конденсироваться до тех пор, пока пересыщение не станет очень сильным или температура необычайно низкой.

Газ в камере Вильсона специально очищается от всех пылинок чтобы водяные пары не выделялись в виде капелек. α-Частица, пролетая через камеру, сталкивается на своем пути с молекулами газа и выбивает электроны из атомов этих молекул. Такие атомы, в которых теперь недостает электронов, называются ионами.Ионы в отличие от обычных атомов могут служить центрами конденсации водяных капель. Таким образом, путь пролетающей α-частицы становится видимым благодаря следу из водяных капелек, образующихся вокруг создаваемых ею ионов.

Пролетая через камеру, α-частица сталкивается с ядром какого-нибудь атома. В этом случае α-частица отскакивает в одну сторону, а ядро — в другую сторону. Движущееся атомное ядро само создает ионы и, следовательно, оставляет за собой капельки воды. Физики знают массу α-частицы и ядра, с которым она сталкивается. По кривизне траектории в магнитном поле они определяют скорость мельчайших частиц до и после соударения, а следовательно, их импульс. По-видимому, во всех бесчисленных зарегистрированных случаях столкновений α-частиц и ядер (так же как в других аналогичных субатомных процессах) импульс сохраняется.

Кроме того, ядра вращаются, т. е. имеют момент количества движения, или, как его чаще называют, спин.

Он тоже сохраняется при всех ядерных столкновениях и реакциях.

9
{"b":"148930","o":1}