Литмир - Электронная Библиотека
Содержание  
A
A

Теория физического вакуума в популярном изложении - id59749_i8e3ce3f88a

Рис. 5.Отклонение луча света вблизи поверхности Солнца.

Используя математические знания о различных геометрических объектах геометрии Римана, можно заранее предсказать результат любого гравитационного эксперимента. Например, уравнения движения тела отсчета, с которым связана ускоренная локально инерциальная система, в теории гравитации Эйнштейна описывается уравнениями геодезических. Эти уравнения были известны математикам задолго до теории Эйнштейна. Великий ученый использовал эти уравнения для теоретических расчетов, заранее зная, что теоретические выводы будут подтверждены экспериментом. Он предсказал, что луч света от далекой звезды, проходящий вблизи Солнца, будет искривляться под действием гравитационного поля ( см. рис.5).

В последствии эксперименты, проведенные астрономами, количественно подтвердили предсказанный А. Эйнштейном угол отклонения луча. Были и другие предсказания теории, получившие количественные подтверждение на опыте. 

1.5. Вакуум Эйнштейна.

После многолетних поисков А. Эйнштейн после дискуссии с немецким математиком Д. Гильбертом находит в 1915 году знаменитые уравнения Эйнштейна, которые описывают гравитационные поля через кривизну пространства событий. Согласно этим уравнениям, массивное тело искривляет пространство-время вокруг себя. В его теории имеется две реальности: пространство-время и материя. Материя выступает на фоне пространства-времени, искривляя его. Если материю убрать, что пространство становится плоским (псевдоевклидовым). Таким образом, пространство-время наделяется упругими свойствами, которые проявляются через искривление его геометрии. Наглядно смоделировать физический процесс отклонения луча света, показанный на рис. 5, можно следующим образом. Представим себе область трехмерного пространства, заполненного прозрачной однородной резиной. Пропуская луч света по различным направлениям внутри резины, мы увидим, что он распространяется всегда по прямой линии. Это модель плоского пространства или «абсолютного вакуума».

Поместим внутрь резины шарик из какого-либо твердого материала. В результате вблизи поверхности шарика возникнут неоднородности из-за вытеснения шариком части объема резины. Если теперь пропустить луч света вблизи поверхности шарика, то он будет распространяется по некоторой кривой из-за неоднородной плотности вблизи поверхности. В данном случае неоднородный кусок прозрачной резины моделирует искривленное пространство или возбужденный вакуум.

Можно теперь утверждать, что согласно теории Эйнштейна физический вакуум это пустое (без материи) пространство-время, обладающее упругими свойствами. Эти свойства проявляются тогда, когда в пустое пространство помещается некая масса. Более того, в теории имеются так называемые вакуумные уравнения Эйнштейна, которые описывают гравитационные поля вне материи, т.е. в чистом виде упругие свойства пустого пространства-времени. Вакуумные уравнения Эйнштейна являются чисто геометрическими и не содержат никаких физических констант.Это так и должно быть, поскольку вакуум не может характеризоваться чем-либо конкретным. Если вакуум наделить какими-нибудь конкретными физическими константами, то это будет уже что-то рожденное из вакуума.

1.6. Вакуум Дирака.

Обратим внимание на очень важный момент. При построении теории гравитации А. Эйнштейн не был ориентирован на эксперимент. Вся содержательная часть теории связана с геометрическими свойствами пространства событий относительных координат ускоренных локально инерциальных систем отсчета первого рода. Достаточно знать, что пространство событий таких систем наделено структурой геометрии Римана, как уже из этого факта следуют уравнения движения массы в произвольном гравитационном поле - уравнения геодезических! Теории такого класса можно назвать дедуктивными.

Большинство физических теорий строится на основе обобщения экспериментальных данных частного характера. Такие теории относятся к классу индуктивных.Примером индуктивной теории является механика Ньютона, термодинамика, электродинамика, квантовая механика и ее наиболее развитая часть - квантовая электродинамика. На сегодняшний день квантовая электродинамика, основателем которой по праву считается П. Дирак, являет собой пример наиболее разработанной физической теории. Теоретические выводы, следующие из ее уравнений, совпадают с результатами опыта с высокой степенью точности (с точностью до величин порядка 10 -7). Тем не менее, не опыт является истиной. Это всего лишь критерий истины. Дело в том, что анализ уравнений квантовой электродинамики позволяет выяснить ряд трудностей. Они приводят к противоречивым выводам и указывают на незаконченность уравнений квантовой электродинамики. П. Дирак это прекрасно понимал и с горечью замечал, что «правильный вывод состоит в том, что основные уравнения неверны». Если бы эти слова произнес не П. Дирак, а какой-нибудь другой даже очень авторитетный теоретик, все остальные физики подумали бы, что он сумасшедший!

Уравнения, которые открыл Дирак, показывают, что в природе существуют частицы с положительной энергией - электроны и античастицы - позитроны, энергия которых отрицательна. Они рождаются парами электрон-позитрон из физического вакуума. Сам же вакуум представляет собой некоторое латентное(скрытое) состояние электронов и позитронов. В среднем физический вакуум не имеет ни массы, ни заряда, ни каких-либо других физических характеристик. Однако в малых пространственных областях (порядка 10 -33) вакуума значения физических характеристик могут стать отличными от нуля - на малых расстояниях вакуум спонтанно флуктуирует. В вакууме постоянно происходят процессы рождения и уничтожения частиц и античастиц разного сорта. Образно говоря, в малых пространственно-временных областях вакуум похож на «кипящий бульон», состоящий из элементарных частиц. Поэтому в квантовой теории возникло представление о физическом вакууме как о «квантовой жидкости», находящейся в вечном движении. Такая жидкость описывается уравнениями квантовой гидродинамики и, естественно, обладает упругими свойствами подобно вакууму Эйнштейна. Для физиков важным оказался вопрос, как объединить уравнения, которые описывают вакуум Эйнштейна и вакуум Дирака с тем, чтобы иметь более правильное представление о нем. В этом вопросе мнения физиков резко разделились.

1.7. Завещание Эйнштейна будущей физике.

К сожалению надо отметить, что за последние сорок лет произошла демократизация физикив худшем смысле этого слова. В процессе принятия важных для развития физики решений принимают участие большие коллективы людей или люди далекие от стратегического мышления. По всем основным вопросам развития существует общественное мнение,которое висит тяжелыми кандалами на всякой оригинальной мысли. Даже А. Эйнштейн, ученый, внесший вклад в развитие трех современных теорий - квантовой теории, специальной и общей теории относительности, подвергался при жизни обструкции. Его точка зрения на физическое содержание современной квантовой механики не принималась большинством современников. Еще Декарт отмечал, что при решении очень сложных вопросов большинство, как правило, ошибается.

С этим можно было бы смириться, если бы не колоссальные материальные потери, которые несет общество за неверно принятые учеными решения. К таким решениям можно причислить проблему управляемойтермоядерной реакции при отсутствии фундаментальной теории ядерных сил, строительство суперускорителей и планирование экспериментов в отсутствии теории элементарных частиц и т. д. В таких условиях значение стратегических работ, оценить которые может ограниченное число ученых, бесценно.

5
{"b":"148902","o":1}