Литмир - Электронная Библиотека
Содержание  
A
A

Текущее положение дел таково: множество экспертов тщательнейшим образом проверили детали доказательства. Опубликованы много сотен страниц пояснений и комментариев к двум препринтам Перельмана [См., например, http://www.math.lsa.umich.edu/research/ricciflow/perelman.html]. Пока ошибок не найдено, и большинство экспертов склоняются к мысли, что задача действительно решена. Что же касается обязательных публикаций, то представители Clay Mathematics Institute уже выступили с заявлением о том, что могут пересмотреть условия присуждения приза.

Ошибка на ошибке: история вопроса

Все началось с исследований, которые Пуанкаре вел в области алгебраической геометрии. Он работал над одним из краеугольных камней этой науки – теорией гомологий, особого класса топологических инвариантов. В 1900 году он опубликовал статью, в которой доказывал, что если у трехмерной поверхности гомология совпадает с гомологией сферы, то и сама поверхность – сфера; на самом деле это утверждение даже более сильное, чем утверждение гипотезы Пуанкаре.

Однако в его рассуждения вкралась ошибка, которую он сам и нашел, к 1904 году разработав важнейшее понятие фундаментальной группы и построив на его базе контрпример к собственной теореме. Тогда же он наконец-то поставил вопрос правильно.

Достаточно долго на гипотезу не обращали внимания. Интерес к ней пробудил Генри Уайтхед[Джон Генри Константин Уайтхед (J.H.C. Whitehead, 1904–1960) – выдающийся английский математик, один из основателей теории гомотопий. Не следует его путать с его собственным дядей Альфредом Уайтхедом, тоже математиком, но специализировавшимся на логике и алгебре, соавтором Бертрана Рассела по знаменитой книге Principia Mathematica], который в 1930-е годы объявил о том, что нашел доказательство. Как вы уже догадались, его доказательство также было неверным. Однако в процессе поиска и попыток исправить свои неточности он обнаружил интереснейшие классы трехмерных поверхностей и значительно продвинул теорию, которая позднее получила название топологии малых (или низших) размерностей. В пятидесятые и шестидесятые годы всплеск интереса к проблеме вновь породил несколько ошибочных заявлений о том, что теорему удалось доказать, и после этого математики наконец-то поняли, что гипотезу Пуанкаре так просто не возьмешь: с шестидесятых годов и до работ Григория Перельмана ложные доказательства предъявляли только любители (таких всегда достаточно; не присоединяйтесь к их числу).

Топология низших размерностей стала отдельной ветвью математики по удивительной причине – в многомерном случае все гораздо проще! Уже в 50-е и 60-е годы утверждения, аналогичные гипотезе Пуанкаре, были доказаны для более высоких размерностей. Трехмерный же случай продолжал оставаться камнем преткновения.

Доказательство Григория Перельмана (см. врезку) основано на идеях, которые развил в начале 1980-х годов Ричард Гамильтон (Richard Hamilton). Эти идеи неожиданным образом выводят топологические заключения из фактов о дифференциальных уравнениях – так называемых потоках Риччи (Ricci flows), обобщающих уравнения термодинамики. Впрочем, в доказательстве Перельмана долгое время не могли разобраться ведущие топологи мира, и вряд ли оно когда-нибудь станет темой популярной статьи.

Алгоритмическая версия

К теме этой статьи примыкает интересная для компьютерщиков область математики – вычислительная топология. Вычислительные и распознавательные задачи есть, оказывается, и в этой абстрактной науке. С одной из таких задач связана и предпринятая в 1974 году очень интересная попытка решения проблемы Пуанкаре в ее алгоритмической версии.

Каждая трехмерная поверхность задается некоторым (не будем вдаваться в подробности) дискретным кодом – конечным набором символов. Одна и та же поверхность имеет бесконечное число различных кодировок. Естественный вопрос: существует ли алгоритм, определяющий по заданному кодовому слову, задает ли оно трехмерную сферу («алгоритмическая проблема Пуанкаре»). Именно эту задачу атаковали в 1974 году А. Фоменко (тот самый), И. Володин и В. Кузнецов [Володин И.А., Кузнецов В.Е., Фоменко А.Т., «О проблеме алгоритмического распознавания стандартной трехмерной сферы», Успехи математических наук, 1974, т. 29, N 5, с. 71-168.]. Они предположили, что определенное свойство кода (оно было названо «волной») дает критерий «сферичности». Однако строго доказать им удалось только, что наличие «волны» гарантирует – перед нами сфера. Доказать же, что в любом коде, задающем сферу, имеется «волна» никак не получалось. Тогда авторы сделали весьма стильный по тем временам ход – провели масштабный компьютерный эксперимент. Была написана программа для машины БЭСМ-6, которая случайным образом генерировала коды, задающие трехмерную сферу, и проверяла наличие в них «волны». В эксперименте, потребовавшем весьма длительного счета, был проверен миллион таких случайных представлений сферы – и во всех обнаружилась волна! С точки зрения здравого смысла – веский аргумент в пользу корректности предложенного алгоритма. Но авторы, будучи серьезными математиками, разумеется, воздерживались от поспешных заявлений. И не напрасно – спустя пару лет один из бывших учеников Фоменко обнаружил контрпример…

Спустя двадцать лет алгоритм распознавания 3-сферы (за экспоненциальное время) был построен[Abigail Thompson. Thin position and the recognition problem for S3. Math. Res. Lett., 1(5):613–630, 1994.]. Общая же проблема алгоритмического распознавания поверхностей размерности 3 открыта, она активно изучается и сегодня. Для более высоких размерностей давно известна ее неразрешимость, для размерности 2 она была решена еще раньше, а вот в нашем родном трехмерье все почему-то невероятно сложно устроено.

Леонид Левкович-Маслюк

[[email protected]]

ТЕХНОЛОГИИ: Видео-невидимо Что можно посмотреть в Интернете?

По мере распространения широкополосных подключений к Сети среди частных пользователей все больше корпораций пытаются привлечь клиентов возможностями, открывающимися благодаря новым скоростям, – прежде всего видеоконтентом.

На менее требовательных к толщине канала музыкальных сервисах получить сверхприбыли нынче трудно. Несмотря на то что продажи музыки в онлайне растут как на дрожжах (по 300% в год!), прорваться на этот рынок практически невозможно. Конечно, случаются и сюрпризы – взять хотя бы новую бизнес-модель распространения легального контента через пиринговые сети, по которой не так давно в сотрудничестве с Sony начал действовать некогда популярный файлообменник Mashboxx. Но все же работать в сфере онлайн-музыки сложно из-за острейшей конкуренции. Именно поэтому предоставление видеоинформации – несравненная по привлекательности возможность для многих компаний стать частью перспективного рынка.

Большие деньги?

Все многообразие способов выхода на рынок в общем-то сводится к двум основным: продаже контента и эксплуатации пользовательского интереса к нему. Классическим и самым распространенным воплощением последнего направления является организация поиска контента в Сети. Хотя встречаются и оригинальные задумки – например, выпустить некий плейер, довести его до культового статуса и начать стричь купоны.

Так, сетевых торговцев музыкой, мягко говоря, не приводит в восторг соседство с фирмой Apple, которая через свой интернет-магазин iTunes контролирует 80% рынка. Меж тем «яблочники» и не думают почивать на лаврах и с октября начали продавать в iTunes видеозаписи, предназначенные прежде всего для скармливания своему же плейеру iPod Video. В итоге уже за первые двадцать дней существования сервиса был продан миллион роликов по цене 1,99 доллара за штуку, а котировки акций Apple подросли на 5%. Сегодня видеоассортимент iTunes состоит из множества записей, среди которых более трех тысяч клипов и полные версии одиннадцати известных сериалов. Все материалы оптимизированы для просмотра на 2,5-дюймовом экране.

27
{"b":"14725","o":1}