Литмир - Электронная Библиотека
A
A

Журнал «Вокруг Света» №07 за 2007 год - TAG_img_cmn_2007_05_06_082_jpg987105

  

Американский физик Эрнесто Орландо Лоуренс, создатель первого циклотрона (внизу). Построенный в 1930 году этот прибор легко умещался на ладони 

Ускоритель частиц на основе этого принципа — циклотрон — был задуман Эрнестом Лоуренсом в 1928 году, хотя идеи о «протонной карусели» в магнитном поле ранее высказывались норвежцем Рольфом Видероэ (Rolf Wideroe). Циклотрон состоит из двух полых половинок диска, дуантов, внутри которых вращаются частицы. На края зазора подается переменное напряжение, частота которого точно совпадает с частотой обращения частиц. Когда частицы пролетают сквозь зазор в одну сторону, электрическое поле подталкивает вперед, а через полпериода, когда они вновь пересекают зазор в обратном направлении, поле уже успевает сменить знак и снова их подталкивает, а не тормозит. Так повторяется круг за кругом, пока не будет достигнута максимальная энергия.

Принципиально важно, что пока скорость электронов существенно меньше скорости света, частота их обращения остается постоянной: рост скорости в точности компенсируется увеличением радиуса орбиты. Благодаря этому частица всегда подлетает к зазору через одинаковые интервалы времени.

Журнал «Вокруг Света» №07 за 2007 год - TAG_img_cmn_2007_05_06_083_jpg921534

Первый построенный Лоуренсом циклотрон имел чуть больше 10 см в диаметре и разгонял частицы до 80 кэВ. Быстрый прогресс привел к появлению циклотрона на 8 МэВ в 1936 году и к 200-мэвному многометровому гиганту в 1946 году, но дальнейший рост размеров оказался сопряжен со слишком большими техническими сложностями (необходимо обеспечить однородное магнитное поле, глубокий вакуум и механическую прочность, не мешая при этом пучку раскручиваться по спирали). Чтобы избавиться от этих проблем вместо огромного диска частицы стали запускать в длинную свернутую в кольцо трубу, а для удержания их на постоянной орбите синхронно с ростом энергии увеличивали магнитное поле. Ускоритель такого типа получил название синхротрон. В основе многих современных ускорителей, в частности в основе LHC, лежит принцип синхротрона.

Следующим этапом в истории ускорительной техники стало создание коллайдеров — ускорителей со встречными пучками. Изначально эту идею высказал и даже запатентовал в 1943 году Рольф Видероэ, однако реализована она была лишь в начале 1960-х годов тремя независимыми командами исследователей: итальянской группой под руководством Бруно Тушека, американцами из Принстона и Стэнфорда и новосибирской группой, возглавляемой Г.И. Будкером.

До того момента все эксперименты проводились с неподвижной мишенью. Когда высокоэнергетическая частица налетает на неподвижную мишень, рожденные продукты столкновения летят вперед с большой скоростью, и именно на их кинетическую энергию тратится основная доля энергии пучков. Если же сталкиваются летящие навстречу друг другу одинаковые частицы, то большая часть их энергии расходуется по прямому назначению: на рождение частиц. Поэтому в коллайдерах могут возникать намного более тяжелые частицы, чем в экспериментах с неподвижной мишенью при той же энергии пучка.

Чудеса на виражах

Типичный ускорительный комплекс представляет собой длинный кольцевой туннель с двумя вакуумированными трубами, по которым в противоположных направлениях движутся частицы. Эти кольца не идеально круглые, а, скорее, представляют собой скругленные многоугольники. На скруглениях стоят поворотные магниты, которые меняют направление пучка, а на прямых участках расположены ускоряющие элементы — клистроны, корректирующие магниты, система «впрыскивания» частиц из предварительного ускорителя, а также вспомогательная аппаратура. В нескольких точках два кольца пересекаются — именно там происходят столкновения встречных частиц, результаты которых изучаются расположенными тут же детекторами.

Успешная работа ускорителя опирается на целый ряд нетривиальных технических ухищрений. Например, в современных ускорителях пучок толщиной меньше волоса распределен вдоль кольца не равномерно, а собран в отдельные короткие сгустки, следующие друг за другом — так удобнее ускорять частицы. Но одноименные заряды, как известно, отталкиваются, и потому сгусток имеет тенденцию расплываться как в продольном, так и в поперечном направлениях. Для компенсации продольного расплывания был придуман метод автофазировки: ускоряющее поле в клистроне прикладывается таким образом, чтобы подгонять отставшие частицы чуть сильнее, а убежавшие вперед сгустка — послабее. С расплыванием в поперечном направлении справляются с помощью магнитного поля сложной формы, которое фокусирует проходящий сквозь него пучок. Такое поле действует на пучок, словно собирающая линза на луч света, его так и называют: магнитная линза.

У протонных коллайдеров есть еще одна проблема: пучок оказывается слишком «горячим» (с большим разбросом по кинетической энергии протонов из-за их поперечного движения). Магнитные линзы ограничивают его расплывание ценой нарастания поперечных колебаний. Справиться с этой проблемой помогла идея электронного охлаждения протонов, выдвинутая советским физиком Г.И. Будкером в 1966 году и экспериментально реализованная в 1974 году под его же руководством в Институте ядерной физики в Новосибирске. На одном из линейных участков рядом со сгустком протонов «впрыскивают» холодный сгусток электронов (они, в отличие от протонов, хорошо охлаждаются сами по себе), движущийся примерно с той же скоростью. Какое-то время они, перемешиваясь, летят вместе, и протоны охлаждаются за счет столкновений с электронами, после чего сгустки вновь разделяются в магнитном поле.

Журнал «Вокруг Света» №07 за 2007 год - TAG_img_cmn_2007_05_06_084_jpg630947

  

Большой дипольный магнит, последним (из 1 700) уложенный в тоннель Большого адронного коллайдера в апреле 2007 года 

Интересно, что в электронных коллайдерах проблем с охлаждением нет. Любая движущаяся заряженная частица создает вокруг себя электромагнитное поле, которое перемещается вместе с ней. Однако на поворотах часть этого поля« «отрывается» от частицы и, став свободным электромагнитным излучением, улетает вперед. Это излучение называется синхротронным. Величина заряда у протонов и электронов одинаковая, а вот масса различается почти в 2 тысячи раз. Поэтому в сопоставимых экспериментах легкие (и куда более быстрые) электроны тратят на излучение на несколько порядков больше энергии, чем протоны. Благодаря этому электронный пучок легко остывает (в нем затухают поперечные колебания), но одновременно с этим он и тормозится, сводя на нет все усилия по его ускорению. Именно по этой причине Большой электрон-позитронный коллайдер LEP в ЦЕРНе с энергией электронов 100 ГэВ, в туннеле которого теперь размещается LHC, считается последним из поколения гигантских кольцевых электронных ускорителей.

Дальше увеличивать энергию электронов можно, лишь отказавшись от поворачивающего магнитного поля, то есть вернувшись к линейным ускорителям. Проекты таких линейных электрон-позитронных ускорителей сейчас активно разрабатываются, и вполне вероятно, что они начнут строиться лет через десять. Однако и здесь энергии больше 1 ТэВ кажутся недостижимыми.

Прорыв может обеспечить только принципиально новая методика ускорения электронов. Стандартная технология позволяет частицам набирать примерно по 50 МэВ на метр пути внутри клистрона. Однако в последние годы активно разрабатывается новая, лазерно-плазменная методика ускорения. В ней с помощью короткого лазерного импульса в облаке плазмы возбуждается сильное возмущение электрического поля. Пролетающий сквозь плазму сгусток электронов может быть подхвачен этим возмущением и очень резко ускориться. На сегодня уже достигнуты впечатляющие результаты: прирост энергии на целый гигаэлектронвольт на пути всего несколько сантиметров! Правда, для успешного применения этой схемы в ускорителе потребуется преодолеть еще много трудностей: научиться состыковывать друг с другом множество ускоряющих модулей и справиться с большим разбросом по энергии частиц в пучке.

29
{"b":"146742","o":1}