Литмир - Электронная Библиотека
Содержание  
A
A

Тепловыделяющие элементы сконструированы так, что быстрые нейтроны покидают элемент и входят в окружающее его вещество — замедлитель. В результате упругих столкновений с ядрами замедлителя нейтроны деления теряют кинетическую энергию до тех пор, пока она не становится равной средней кинетической энергии ядер замедлителя. Нейтроны движутся в замедлителе хаотично, и те из них, которые попадают обратно в твэлы, продолжают реакцию деления, если их кинетическая энергия достаточна для этого. Таким образом, в активной зоне реактора реакция продолжается с постоянной скоростью, поддерживаемой поглотителями (замедлителями, графитовыми стержнями) излишних нейтронов. Только один из нескольких нейтронов, образовавшихся при делении ядра, продолжает реакцию.

Внутри герметичной стальной камеры, по которой протекает жидкость-теплоноситель, удаляющая избыток тепла из замедлителя, находится активная зона. Горячий теплоноситель, проходя через теплообменник, образует пар, который приводит в движение турбины, вырабатывающие электрический ток. Нейтроны, покидающие пределы активной зоны, поглощаются либо стенками стальной камеры, либо толстыми бетонными стенами, окружающими реактор. После отработки в атомном реакторе тепловыделяющие элементы очень радиоактивны, так как содержат много осколков с нейтронами и являются источником β-излучения. Кроме того, ядра урана-238 также поглощают нейтроны и становятся нестабильными, образуя цепь изотопов, в числе которых находится плутоний-239, источник γ- и β-излучения. Отработанные твэлы около года охлаждают в бассейнах выдержки, а затем перерабатывают, получая плутоний и неиспользованный уран.

См. также статьи «Деление ядер», «Радиоактивность».

АТОМЫ И МОЛЕКУЛЫ

Атом — мельчайшая частица химического элемента, сохраняющая его свойства. Элемент — вещество, которое невозможно разложить на составляющие. Если атом состоит из положительно заряженного ядра, окруженного отрицательно заряженными электронами, то атомное ядро — из протонов, которые имеют одинаковый электрический заряд, и нейтронов, не имеющих заряда. Масса протона приблизительно равна массе нейтрона, а масса электрона значительно меньше массы протона или нейтрона.

Электроны в атомах располагаются в оболочках, окружающих ядро. Энергия электрона, находящегося в оболочке, постоянна. Нулевая энергия электрона в атоме соответствует энергии электрона вне атома, поэтому в атоме энергия электрона отрицательна. Чем дальше расположена оболочка, тем выше энергия электрона в оболочке. Каждая оболочка может содержать определенное максимальное количество электронов. В нормальном, невозбужденном, состоянии электроны обладают наименьшей энергией. Причем чем ближе к ядру расположены электроны, тем ниже их энергия. Атомы могут объединяться в молекулы с помощью межатомных связей, образующихся при взаимодействии их внешних электронов. Каждый тип атома условно обозначают как A Z X, где X — химический символ элемента, Z — количество протонов, соответствующих атомному числу, а А — массовое число, соответствующее числу протонов и нейтронов, вместе взятых.

Изотопы — атомы одного и того же элемента, но с разным количеством нейтронов в ядре. Например, у водорода может быть три изотопа:, состоящий из одного протона и одного электрона; 1 1 H, состоящий из одного протона и одного нейтрона в ядре и одного электрона; а также 3 1 Н, в ядре которого находятся два нейтрона. Изотопы элемента обладают различными физическими свойствами, потому что из-за разного числа нейтронов каждый тип атома имеет разную массу. Поскольку все они представляют один и тот же элемент, т. е. имеют одинаковое число протонов и электронов, они обладают одинаковыми химическими свойствами.

См. также статьи «Типы межатомных связей», «Энергетические уровни атомов».

БОЛЬШОЙ ВЗРЫВ

Согласно теории Большого Взрыва, наша Вселенная образовалась из одной точки в результате мощного взрыва, во время которого возникли пространство, время и материя. Предполагается, что это событие произошло около 12 миллиардов лет назад. По мере расширения Вселенной образовались галактики, до сих пор удаляющиеся друг от друга. Известно, что дальние галактики удаляются друг от друга со скоростью, приблизительно равной скорости света.

Теория Большого Взрыва берет свое начало в открытии, сделанном в 1929 году американским астрономом Эдвином Хабблом. Он обнаружил, что скорость удаления галактик пропорциональна расстоянию до них. Это отношение, известное как закон Хаббла, записывается следующим образом:

υ = Hd, где υ — скорость удаления, d — расстояние до галактик, а H — постоянный коэффициент (постоянная Хаббла).

Исходя из закона Хаббла можно сделать вывод, что Вселенная расширяется, однако теорию Большого Взрыва не признавали до тех пор, пока в 1965 году ученые Арно Пенсиас и Роберт Уилсон, проверяющие систему обнаружения радиосигналов со спутников, не открыли космическое фоновое микроволновое излучение. Оказалось, что последнее в микроволновом диапазоне электромагнитного спектра поступает со всех сторон космического пространства. Ученые пришли к мнению, что это излучение распространяется по Вселенной с того времени, как вещество после Большого Взрыва остыло и стало радиопрозрачным.

До открытия, сделанного Пенсиасом и Уилсоном, многие астрономы поддерживали теорию стационарной Вселенной, согласно которой ее расширение происходит вследствие образования нового вещества между расходящимися в результате этого галактиками. От стационарной модели пришлось отказаться, так как она, в отличие от теории Большого Взрыва, не объясняет наличия фонового микроволнового излучения, распространяющегося по всем направлениям. Вышеуказанная теория также объясняет, почему водорода во Вселенной в три раза больше, чем гелия.

См. также статьи «Закон Хаббла», «Электромагнитные волны».

ВЕКТОРЫ

Векторной величиной называется любая физическая величина, имеющая наряду с числовым значением и направление. Перемещение, скорость, ускорение, сила, импульс, напряженность поля — все это векторные величины.

Скалярной величиной называется физическая величина, не имеющая направления. В качестве примеров можно привести расстояние, массу, энергию и мощность.

Векторную величину можно представить в виде направленного отрезка, длина которого пропорциональна числовому значению (модулю) величины, а направление совпадает с направлением величины. Вектор величины F, направленный под углом θ к некоей прямой линии, имеет две составляющие: F cos θ параллельно линии и F sin θ перпендикулярно линии. Если указанная линия является осью x системы координат, то F x= F cos θ и F y= F sin θ. Вектор можно разложить на составляющие i и j, направленные вдоль оси x и оси у соответственно, причем F = (F cos θ)i + (F sin θ)j.

Величину вектора F и его направление можно вычислить исходя из его перпендикулярных компонентов F xи F yпо формуле

F= (F x 2+ F y 2) 1/2и tg θ = F y/F x,где θ — угол между вектором и осью х.

Сложение векторов

Правило параллелограмма для сложения векторов — точный геометрический метод нахождения результирующего вектора двух заданных векторов. Два вектора изображаются так, чтобы они образовывали две смежные стороны параллелограмма. Результирующим вектором будет его диагональ, направленная от начала первого вектора к концу второго. Два вектора прикладываются друг к другу так, чтобы конец первого был в той же точке, что и начало второго, поэтому сумма векторов — вектор, направленный из начала первого в конец второго.

Правило параллелограмма

101 ключевая идея: Физика - i_001.jpg
2
{"b":"146572","o":1}