Литмир - Электронная Библиотека
A
A

Перепрыгнуть этот барьер можно, только если гелий-4 сольется с ядром трития и гелия-3. Тогда рождаются соответственно литий-7 или бериллий-7. Но эти реакции идут неохотно, поскольку электрический заряд у ядер гелия вдвое больше, чем у водорода. Одинаково заряженные частицы отталкиваются, и, чтобы слить их друг с другом, нужна более высокая энергия столкновения, то есть более высокая температура. Между тем быстрое расширение в первые минуты после Большого взрыва сопровождается падением температуры и плотности вещества — Вселенная перестает быть «сама себе звездой». В итоге лития и бериллия образуется очень мало. Дальше процесс синтеза не идет — на «штурм» второго барьера (неустойчивость ядра из 8 нуклонов) практически нет охотников. А без этого не добраться до углерода — самого важного для существования жизни атома.

Всего несколько минут есть у Вселенной, чтобы поиграть в конструктор из протонов и нейтронов. Когда игра заканчивается, три четверти массы приходится на обычный водород, а четверть — на гелий-4 (поэтому все остальные элементы астрономы называют тяжелыми, а то и вовсе «металлами»). Еще остается очень небольшое количество дейтерия, гелия-3 и лития (тритий и бериллий-7 неустойчивы и вскоре распадаются). Определяя их содержание, можно получить очень важную информацию о первых минутах жизни Вселенной, но из таких материалов никакой алхимик не сделает не то что гомункулуса, но и камень (даже не философский, а самый обыкновенный). Но мы-то ведь существуем! И Земля есть. Значит, должны быть в природе какие-то тигли, в которых образуются и углерод, и кислород, и кремний. Надо только немного подождать — каких-нибудь несколько десятков миллионов лет...

Звездный тигель

После долгих «темных веков» во Вселенной зажигаются первые звезды. В их недрах при температуре около 10 миллионов градусов и плотности в несколько раз выше, чем у самого плотного металла на Земле, снова возникают условия для игры в алхимический конструктор — начинается звездный нуклеосинтез. Первое время эта игра весьма похожа на ту партию, что разыгрывалась сразу после рождения Вселенной. И все же некоторые отличия имеются. В звездном веществе вначале почти нет свободных нейтронов (в свободном состоянии они живут всего лишь около 15 минут), и поэтому дейтерий образуется при столкновении двух протонов. Один из них в процессе слияния превращается в нейтрон, испуская позитрон — положительно заряженную античастицу электрона, — чтобы избавиться от лишнего заряда. В отсутствие нейтронов из дейтерия не образуется тритий. Дейтерий довольно быстро соединяется с еще одним протоном и превращается в гелий-3. Прямой переход от него к гелию-4 путем захвата нейтрона, как в ранней Вселенной, невозможен, но тут имеется ряд обходных путей.

Журнал «Вокруг Света» №04 за 2008 год - TAG_img_cmn_2008_04_07_023_jpg532409

В ядрах большинства звезд водород постепенно превращается в гелий. Фото PL/EAST NEWS 

Два ядра гелия-3 могут, столкнувшись, образовать крайне неустойчивое ядро бериллия-6 (4 протона + 2 нейтрона), которое мгновенно разваливается на гелий-4 и пару протонов. Другой вариант сложнее: в реакциях гелия-3 и гелия-4 рождаются ядра бериллия и лития с атомным весом 7. Однако, присоединяя еще один протон, они становятся неустойчивыми (помните — все ядра из 8 нуклонов крайне нестабильны) и сразу разваливаются на два ядра гелия-4. В общем, все дороги ведут в Рим.

Итогом любого из этих процессов становится превращение четырех протонов в одно ядро гелия-4. Важно, что масса ядра гелия-4 немного (примерно на 0,7%) меньше массы четырех протонов. Куда исчезает излишек массы? В соответствии все с той же формулой E = mc2 он превращается в энергию. Именно за счет этого, как говорят физики, дефекта массы и светят звезды. И, что немаловажно, звездный термоядерный реактор умеет сам себя регулировать: если выделяется слишком много энергии, звезда немного расширяется, вещество охлаждается и скорость реакции, которая очень сильно зависит от температуры, снижается. Если же энергии мало, то происходит обратный процесс. В итоге звезда стабильно поддерживает температуру на уровне, соответствующем достаточно низкому темпу реакций. Поэтому звезды (по крайней мере, некоторые из них) живут достаточно долго, чтобы хватило времени для биологической эволюции и появления столь высокоорганизованных существ, как мы с вами.

В конце концов запасы водорода в звезде исчерпываются. Надо двигаться дальше, а мы помним, что это непросто, поскольку не существует стабильных ядер с массой 5 и 8. Но природа находит выход. Вспоминая встречу одноклассников в метро, можно сказать, что хотя случайно столкнуться сразу троим крайне маловероятно, но если встретились двое и какое-то время едут вместе, то шансы, что по пути к ним добавится третий, увеличиваются. Нечто подобное происходит при ядерном горении гелия. В начале две альфа-частицы, сливаясь, образуют неустойчивое ядро бериллия-8. Жизнь его чрезвычайно коротка, 3.10-16 с (это меньше одной миллионной от одной миллиардной секунды), но при достаточно высокой плотности и температуре даже этого крошечного интервала хватает, чтобы иногда в реакцию с бериллием успела вступить еще одна альфа-частица. И — вуаля! — углерод-12 собственной персоной!

Затем уже углерод может захватывать альфа-частицы, давая кислород. Таким образом, два основных элемента, необходимых для появления жизни, рождаются в звездах. Превращение углерода в кислород идет настолько эффективно, что последнего во Вселенной оказывается даже несколько больше углерода. Если бы параметры ядерных частиц были чуть иными, то почти весь углерод «перегорал» бы в кислород, что делало бы жизнь в той форме, которую мы знаем, крайне редкой или даже невозможной. Может быть, в каких-то других вселенных частицы устроены несколько иначе и там углерода мало, но тогда там нет и наблюдателей (по крайней мере, подобных нам).

Ядра, элементы и изотопы

Протоны и нейтроны (собирательно их называют нуклонами) не являются в строгом смысле слова элементарными частицами. Они состоят из трех кварков, накрепко связанных сильным ядерным взаимодействием. Разбить нуклон на отдельные кварки невозможно: требуемой для этого энергии достаточно для рождения новых кварков, которые, объединившись с осколками исходного нуклона, вновь образуют составные частицы. Сильное взаимодействие не полностью замкнуто внутри нуклонов, а действует еще и на небольшом расстоянии от них. Если два нуклона, скажем, протон и нейтрон, сблизятся почти вплотную, ядерные силы свяжут их вместе и появится составное атомное ядро — в данном случае дейтерий (тяжелый водород). Соединяя вместе разное число протонов и нейтронов, можно получить все многообразие ядер, но далеко не каждое из них будет устойчивым. Ядро, в котором слишком много протонов или нейтронов, разваливается на части, даже не успев толком образоваться. Физикам известно более трех тысяч сочетаний протонов и нейтронов, способных хотя бы некоторое время продержаться вместе. Есть ядра, которые живут лишь краткую долю секунды, другие — десятки лет, а есть и такие, что способны ждать своего часа миллиарды лет. И лишь несколько сотен ядер считаются стабильными — их распад никогда не наблюдался. Химики обычно не столь дотошны, как физики, и различают не любые два ядра, а только разные элементы, то есть ядра с разным числом протонов. Собственно, химики вообще в ядро не заглядывают, а изучают лишь поведение электронов, окружающих его в спокойной обстановке. Их число как раз равно числу протонов, что делает атомы электрически нейтральными. Всего на сегодня известно 118 элементов, но только 92 из них обнаружены в природной среде, остальные получены искусственно на ядерных реакторах и ускорителях. Большинство элементов представлено ядрами с разным числом нейтронов. Такие вариации называют изотопами. У некоторых элементов известно до сорока изотопов, при упоминании их различают, указывая число нуклонов в ядре. Например, уран-235 и уран-238 — два изотопа 92-го элемента урана со 143 и 146 нейтронами соответственно. Большинство изотопов каждого элемента (а у некоторых и все) неустойчивы и подвержены радиоактивному распаду. Это делает изотопный состав важным источником информации об истории вещества. Например, по соотношению радиоактивных изотопов и продуктов их распада определяют возраст органических остатков, горных пород, метеоритов и даже некоторых звезд. Впрочем, и соотношение стабильных изотопов тоже может о многом рассказать. Например, климат Земли в далеком прошлом определяют по изотопам кислорода-16 и -18 в отложениях антарктических льдов: молекулы воды с тяжелым изотопом кислорода менее охотно испаряются с поверхности океана, и их становится больше при теплом климате. Для любых таких изотопных исследований принципиально, чтобы изучаемый образец с момента возникновения не обменивался веществом с окружающей средой.

3
{"b":"146352","o":1}