«К получению желанного намерения ничего не оставлять, что до химической науки и горных дел касается, а при том учиться и естественной истории, физике, геометрии и тригонометрии, механике, гидраулике и гидротехнике. Объявленным, наукам учиться ему у тамошнего советника правительства: г. Вольфа и требовать от него при всех случаях совета, а к нему о том уже писано, и впредь письменная пересылка с ним содержана быть имеет».
Но Вольф не торопился с обучением присланных к нему студентов. Он полагал, что им надо еще приобрести основательное знание немецкого языка, чтобы слушать его лекции. Инструкция вменяла им в обязанность стараться «о получении такой способности в русском, немецком, латинском и французском языках, чтобы они ими свободно говорить и писать могли, а потом учиться прилежно рисованию». Кроме того, как заправские студенты, они намеревались обучиться фехтованию. Учителей им пришлось подыскивать самим. Но с первых же шагов за границей русские студенты показали, что они вполне отдавали себе отчет в том, что им нужно, и умели критически отнестись к достоинствам своих учителей. Они договорились с местным медиком Конради, что он будет вести с ними теоретические и практические занятия по химии и объяснит им основы этой науки. Студенты скоро раскусили, что имеют дело не с настоящим ученым, и через три недели смело отказались от его лекций.
Это заставило Вольфа поближе присмотреться к диковинным русским молодым людям. По его совету они стали слушать лекции по математике и химии у профессора Дуйзинга читавшего на медицинском факультете, где ютилась химия Впоследствии (в июле 1739 года) Ю. Дуйзинг письменно засвидетельствовал, что «весьма достойный и даровитый юноша Михаил Ломоносов, студент философии… с неутомимым прилежанием слушал лекции химии, читанные мною в течение 1737 года, и… по моему убеждению, он извлек из них немалую пользу». Однако Дуйзинг, занимавшийся химией применительно к медицине и преподававший ее по устаревшим учебникам, был целиком во власти как раз тех самых научных предрассудков и порочных методов, которые и мешали химии стать подлинной наукой. Он не мог дать Ломоносову ни теоретических оснований, ни ясной перспективы того пути, по которому должно пойти развитие химической науки. То и другое Ломоносову пришлось находить самому. Возможно, что любознательный Ломоносов, посещая занятия Дуйзинга, приобщился и к различным другим предметам, преподаваемым на том же факультете, и бывал в анатомическом театре.
Наибольшее значение для Ломоносова имели лекции Христиана Вольфа, начавшего систематические занятия с русскими студентами уже с 1737 года. В сентябре 1737 года Вольф сообщает в Петербург об их первых успехах: «Виноградов и Ломоносов начинают уже говорить по-немецки и довольно хорошо понимают то, о чем говорится… Стали они также учиться рисованию, которое им пригодится в механике и естественной истории. Зимой они будут слушать экспериментальную физику, причем я тут же всякий раз намерен указывать им, на что именно следует обращать внимание при таких экспериментах».
Вольф вел занятия по самым разнообразным предметам. Помимо логики, философии, метафизики, права, он читал универсальный курс математических наук, включающий теоретическую физику, механику, оптику, гидравлику, архитектуру, фортификацию и даже пиротехнику. Вольф с необычайной гордостью объявлял свой метод «математическим» и применял «простые эвклидовы методы» решительно всюду: не только в технических науках, но даже и в богословии и юриспруденции. Все вопросы Вольф излагал в виде «математических теорем» с «доказательствами», многочисленными «определениями», «изъяснениями», пестревшими ссылками на предыдущие параграфы. Это был чисто внешний, логический (априорно-догматический) метод изложения, который, разумеется, никак нельзя отождествлять с математическим методом, применяемым в современном естествознании. Что же касается самой математики, то и она имела для него существенное значение не столько своим содержанием, сколько своими логическими возможностями. «Не математическая истина, а порядок, в котором она основательно познана, является средством к усовершенствованию человеческого разума», — утверждал он. В качестве образца, что представлял иногда собой на практике «строго математический метод» Вольфа, приведем несколько параграфов из его книги «Начальное основание всех математических наук» (глава «Строительное искусство»):
«2. Определение.
§ 2. Под строением мы разумеем пространство, которое искусственно ограничено, чтобы надежно и без помех произвести на нем известные сооружения.
3. Определение.
§ 3. Строение называют прочным, когда нет опасности, что оно развалится или через короткое время благодаря употреблению ухудшится и придет в негодность.
1. Аксиома.
§ 12. Каждое строение должно быть воздвигнуто прочным (§ 3).
2. Аксиома.
§ 13. О долговечности строения судят по продолжительности времени, в течение которого сохраняются все сооружения, в нем предпринятые.
3. Аксиома.
§ 14. Всякое строение должно быть сооружено удобным.
9. Определение.
§ 25. Под строительным материалом мы разумеем всё то, что действительно употребляется при строении, как то: дерево, черепица, камень, песок, известь.
1. Добавление.
§ 26. Для предпринимаемого строения надлежит выбирать долговечный материал (§ 12).
3. Добавление.
§ 28. Ежели дерево не сухо, то оно высыхает в строении. А когда оно высыхает, то коробится, перекашивается и дает трещины. И по этой причине строение ухудшается. Того ради дерево для строения должно быть сухо (§ 26).
2. Задача.
§ 29. Заготовить дерево для строения.
Решение.
1. С осени подрубить деревья с одной стороны до сердцевины.
2. С конца декабря до середины февраля, когда дерево имеет меньше всего соков, срубать их до конца (§ 28)».
Вольф придерживался подобного изложения из принципа. Он был убежден, что всё человеческое знание можно вывести логическим путем из первоначальных элементарных оснований и небольшого числа бесспорных аксиом. Его стремление превратить каждый самый мелкий вопрос в непреложную «вечную» истину, развернуть логическую цепь доказательств, простирающуюся на все уголки жизни, было связано с общим метафизическим характером его системы.
В результате Вольф как бы изобрел «новую схоластику», которая была не только тесно связана со старой религиозной схоластикой, но и стремилась вобрать в себя материал новой опытной науки. Он не только не осуждал эклектическое смешение разных теорий, но старался включить в свою «систему» на равных правах обрывки различных учений, наскоро согласовав их между собой с помощью поверхностных логических рассуждений, тянущихся тонкой цепочкой от параграфа к параграфу его многочисленных книг и сочинений. Он сам себя называл философом, «который не присягает ни одному знамени», а лишь испытывает и удерживает то, что «согласуется между собой в разуме».
На практике это часто сводилось к унылому и водянистому изложению избитых истин. Один остроумный современник Вольфа писал по этому поводу в 1740 году, что вольфовское стремление «свести всё к самым начальным основаниям разума» напоминает ему детскую игру в «запечатанные коробочки», которые искусно вложены одна в другую. «Когда же, набравшись терпения, откроешь их все одну за одной, чтобы наконец добраться до ожидаемой драгоценности, то обыкновенно она оказывается пустышкой».
В Государственной Публичной библиотеке имени Салтыкова-Щедрина в Ленинграде, в собрании, принадлежавшем Вольтеру, сохранилась небольшая рукопись, приписываемая знаменитому швейцарскому математику Иоганну Бернулли. Это небольшой «ученый трактат» о том, как с помощью математического метода наиболее целесообразно тачать башмаки. «Трактат» пародирует манеру изложения Вольфа, его стремление растолковывать общеизвестные истины и искать во всем мелочную пользу. Он начинен всевозможными «определениями» и «аксиомами», составленными в духе Вольфа, а иногда включает и подлинные положения его философских работ, что придает сатире еще большую остроту. Приведем небольшой отрывок из этого памфлета: