Этот же шаблон может использоваться для задания (инстанцирования) другого класса, скажем, класса «Точки_на_плоскости». В этом случае класс «Точки_на_плоскости» актуализирует те же формальные параметры, но с другими значениями, например, "ЬтсГ<координаты_точки, х, у>. Концепция шаблонов является достаточно мощным средством в ООП, и поэтому ее использование в языке UML позволяет не только сократить размеры диаграмм, но и наиболее корректно управлять наследованием свойств и поведения отдельных элементов модели.
Рис. 5.20. Пример использования шаблона на диаграмме классов
5.6. Рекомендации по построению диаграмм классов
Процесс разработки диаграммы классов занимает центральное место в ООАП сложных систем. От умения правильно выбрать классы и установить между ними взаимосвязи часто зависит не только успех процесса проектирования, но и производительность выполнения программы. Как показывает практика ООП, каждый программист в своей работе стремится в той или иной степени использовать уже накопленный личный опыт при разработке новых проектов. Это обусловлено желанием свести новую задачу к уже решенным, чтобы иметь возможность использовать не только проверенные фрагменты программного кода, но и отдельные компоненты в целом (библиотеки компонентов).
Такой стереотипный подход позволяет существенно сократить сроки реализации проекта, однако приемлем лишь в том случае, когда новый проект концептуально и технологически не слишком отличается от предыдущих. В противном случае платой за сокращение сроков проекта может стать его реализация на устаревшей технологической базе. Что касается собственно объектной структуризации предметной области, то здесь уместно придерживаться тех рекомендаций, которые накоплены в ООП. Они широко освещены в литературе [1, 2, 4, 10, 13, 18, 20] и поэтому здесь не рассматриваются.
При определении классов, атрибутов и операций и задании их имен и типов перед отечественными разработчиками всегда встает невольный вопрос: какой из языков использовать в качестве естественного, русский или английский? С одной стороны, использование родного языка для описания модели является наиболее естественным способом ее представления и в наибольшей степени отражает коммуникативную функцию модели системы. С другой стороны, разработка модели является лишь одним из этапов разработки соответствующей системы, а применение инструментальных средств для ее реализации в абсолютном большинстве случаев требует использования англоязычных терминов. Именно поэтому возникает характерная неоднозначность, с которой, по-видимому, совершенно незнакома англоязычная аудитория.
Отвечая на поставленный выше вопрос, следует отметить, что наиболее целесообразно придерживаться следующих рекомендаций. При построении диаграммы вариантов использования, являющейся наиболее общей концептуальной моделью проектируемой системы, применение русскоязычных терминов является не только оправданным с точки зрения описания структуры предметной области, но и эффективным с точки зрения коммуникативного взаимодействия с заказчиком и пользователями. При построении остальных типов диаграмм следует придерживаться разумного компромисса.
В частности, на начальных этапах разработки диаграмм целесообразность использования русскоязычных терминов вполне очевидна и оправдана. Однако, по мере готовности графической модели для реализации в виде программной системы и передачи ее для дальнейшей работы программистам, акцент может смещаться в сторону использования англоязычных терминов, которые в той или иной степени отражают особенности языка программирования, на котором предполагается реализация данной модели.
Более того, использование CASE-инструментариев для автоматизации ООАП, чаще всего, накладывает свои собственные требования на язык спецификации моделей. Именно по этой причине большинство примеров в литературе даются в англоязычном представлении, а при их переводе на русский может быть утрачена не только точность формулировок, но и семантика соответствующих понятий.
После разработки диаграммы классов процесс ООАП может быть продолжен в двух направлениях. С одной стороны, если поведение системы тривиально, то можно приступить к разработке диаграмм кооперации и компонентов. Однако для сложных динамических систем поведение представляет важнейший аспект их функционирования. Детализация поведения осуществляется последовательно при разработке диаграмм состояний, последовательности и деятельности. К изучению первой из них мы и приступим в главе 6.
ГЛАВА 6 Диаграмма состояний (statechart diagram)
Рассмотренная выше диаграмма классов представляет собой логическую модель статического представления моделируемой системы. Речь идет о том, что на данной диаграмме изображаются только взаимосвязи структурного характера, не зависящие от времени или реакции системы на внешние события. Однако для большинства физических систем, кроме самых простых и тривиальных, статических представлений совершенно недостаточно для моделирования процессов функционирования подобных систем как в целом, так и их отдельных подсистем и элементов.
Рассмотрим простой пример. Любое техническое устройство, такое как телевизор, компьютер, автомобиль, телефонный аппарат в самом общем случае может характеризоваться такими своими состояниями, как «исправен» и «неисправен». Интуитивно ясно, какой смысл вкладывается в каждое из этих понятий. Более того, использование по назначению данного устройства возможно только тогда, когда оно находится в исправном состоянии. В противном случае необходимо предпринять совершенно конкретные действия по его ремонту и восстановлению работоспособности.
Однако понимание семантики понятия состояния представляет определенные трудности. Дело в том, что характеристика состояний системы не зависит (или слабо зависит) от логической структуры, зафиксированной в диаграмме классов. Поэтому при рассмотрении состояний системы приходится на время отвлечься от особенностей ее объектной структуры и мыслить совершенно другими категориями, образующими динамический контекст поведения моделируемой системы. Поэтому при построении диаграмм состояний необходимо использовать специальные понятия, которые и будут рассмотрены в данной главе.
Ранее, в главах 1 и 4, было отмечено, что каждая прикладная система характеризуется не только структурой составляющих ее элементов, но и некоторым поведением или функциональностью. Для общего представления функциональности моделируемой системы предназначены диаграммы вариантов использования, которые на концептуальном уровне описывают поведение системы в целом. Сейчас наша задача заключается в том, чтобы представить поведение более детально на логическом уровне, тем самым раскрыть сущность ответа на вопрос: «В процессе какого поведения система обеспечивает необходимую функциональность?».
Для моделирования поведения на логическом уровне в языке UML могут использоваться сразу несколько канонических диаграмм: состояний, деятельности, последовательности и кооперации, каждая из которых фиксирует внимание на отдельном аспекте функционирования системы. В отличие от других диаграмм диаграмма состояний описывает процесс изменения состояний только одного класса, а точнее – одного экземпляра определенного класса, т. е. моделирует все возможные изменения в состоянии конкретного объекта. При этом изменение состояния объекта может быть вызвано внешними воздействиями со стороны других объектов или извне. Именно для описания реакции объекта на подобные внешние воздействия и используются диаграммы состояний.
Главное предназначение этой диаграммы – описать возможные последовательности состояний и переходов, которые в совокупности характеризуют поведение элемента модели в течение его жизненного цикла. Диаграмма состояний представляет динамическое поведение сущностей, на основе спецификации их реакции на восприятие некоторых конкретных событий. Системы, которые реагируют на внешние действия от других систем или от пользователей, иногда называют реактивными. Если такие действия инициируются в произвольные случайные моменты времени, то говорят об асинхронном поведении модели.