Применение конденсатора удваивает обратное напряжение по сравнению с его величиной при отсутствии конденсатора. Весьма опасным является короткое замыкание нагрузки, которое, в частности, получается при пробое конденсатора сглаживающего фильтра. Тогда все напряжение источника будет приложено к диоду и ток станет недопустимым. Происходит тепловой пробой диода.
Достоинством полупроводниковых диодов по сравнению с вакуумными является не только отсутствие накала катода, но и малое падение напряжения на диоде при прямом токе. Независимо от величины тока, т. е. от мощности, на которую рассчитан полупроводниковый диод, прямое напряжение на нем составляет десятые доли вольта или немногим больше 1 В. Поэтому КПД выпрямителей с полупроводниковыми диодами выше, чем с вакуумными диодами. При выпрямлении более высоких напряжений КПД повышается, так как в этом случае потеря напряжения около 1В на самом диоде не имеет существенного значения.
Таким образом, полупроводниковые диоды по сравнению с вакуумными более экономичны и выделяют при работе меньше тепла, создающего вредное нагревание других деталей, расположенных вблизи. Также полупроводниковые диоды имеют очень большой срок службы. Но их недостатком является сравнительно невысокое предельное обратное напряжение не более сотен вольт, а у высоковольтных кенотронов оно может быть до десятков киловольт.
Полупроводниковые диоды могут применяться в любых выпрямительных схемах. Если сглаживающий фильтр выпрямителя начинается с конденсатора большой емкости, то при включении переменного напряжения на заряд конденсатора происходит импульс тока, часто превышающий допустимое значение прямого тока данного диода. Поэтому для уменьшения такого тока иногда последовательно с диодом включают ограничительный резистор с сопротивлением порядка единиц или десятков Ом.
В полупроводниковых диодах, работающих в выпрямительном режиме, при перемене полярности напряжения могут наблюдаться значительные импульсы обратного тока. Эти импульсы возникают по двум причинам. Во-первых, под влиянием обратного напряжения получается импульс тока, заряжающего барьерную емкость р-п-перехода. Чем больше эта емкость, тем больше такой импульс. Во-вторых, при обратном напряжении происходит рассасывание неосновных носителей, накопившихся в п– и р-областях. Практически вследствие неодинаковости концентраций примесей в этих областях главную роль играет больший заряд, накопившийся в одной из областей.
16. ОБЩИЕ СВЕДЕНИЯ О ТРАНЗИСТОРАХ
В числе электропреобразовательных полупроводниковых приборов, т. е. приборов, служащих для преобразования электрических величин, важное место занимают транзисторы. Они представляют собой полупроводниковые приборы, пригодные для усиления мощности и имеющие три вывода или больше. Транзисторы могут иметь разное число переходов между областями с различной электропроводностью. Наиболее распространены транзисторы с двумя р-п-пе-реходами. Эти транзисторы называют биполярными, так как их работа основана на использовании носителей заряда обоих знаков. Первые транзисторы были точечными, но они работали недостаточно устойчиво. В настоящее время изготавливаются и применяются исключительно плоскостные транзисторы.
Плоскостной биполярный транзистор представляет собой пластинку германия или другого полупроводника, в которой созданы три области с различной электропроводностью.
Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом, в транзисторе имеются два р-п-перехода – эмиттерный между эмиттером и базой и коллекторный между базой и коллектором. Расстояние между ними должно быть очень малым, не более единиц микрон, т. е. область базы должна быть очень тонкой. Это является важнейшим условием для хорошей работы транзистора. Кроме того, обычно концентрация примесей в базе значительно меньше, чем в коллекторе и эмиттере. С помощью металлических электродов от базы, эмиттера и коллектора сделаны выводы. (
Транзистор может работать в трех режимах в зависимости от того, каковы напряжения на его переходах. Работа в активном режиме получается в случае, если на эмиттерном переходе напряжение прямое, а на коллекторном – обратное. Режим отсечки или запирания достигается подачей обратного напряжения на оба перехода. Если на обоих переходах напряжение прямое, то транзистор работает в режиме насыщения. Активный режим является основным. В частности, он используется в большинстве усилителей и генераторов.
В практических схемах с транзисторами обычно образуются две цепи. Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную цепь включают нагрузку.
Зависимости между токами и напряжениями в транзисторах выражаются их статическими характеристиками, т. е. характеристиками, снятыми на постоянном токе и при отсутствии нагрузки в выходной цепи.
Входные и выходные характеристики транзистора имеют тесную связь с вольт-амперной характеристикой полупроводникового диода. Входные характеристики относятся к эмиттерному переходу, который работает при прямом напряжении. Поэтому они аналогичны характеристике обратного тока диода. Выходные характеристики подобны характеристике обратного тока диода, так как они отображают свойства коллекторного перехода, работающего при обратном напряжении.
Существуют еще характеристики обратной связи, которые показывают, как изменяется напряжение на входе транзистора под влиянием изменения выходного напряжения при условии, что входной ток постоянен.
17. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНЗИСТОРЕ
Рассмотрим, как работает транзистор в статическом режиме без нагрузки, когда включены только источники постоянных питающих напряжений. Полярность их такова, что на эмиттерном переходе напряжение прямое, а на коллекторном – обратное. Поэтому сопротивление эмиттерного перехода мало и для получения нормального тока в этом переходе достаточен источник с напряжением порядка десятых долей вольта. Сопротивление коллекторного перехода велико и напряжение обычно составляет единицы или десятки вольт.
Принцип работы транзистора заключается в том, что прямое напряжение эмиттерного перехода существенно влияет на ток коллектора: чем больше напряжение, тем больше токи эмиттера и коллектора. При этом изменение тока коллектора лишь незначительно меньше изменений тока эмиттера. Таким образом, входное напряжение управляет током коллектора. Усиление электрических колебаний с помощью транзистора основано именно на этом явлении.
Физические процессы в транзисторе происходят следующим образом. При увеличении прямого входного напряжения понижается потенциальный барьер в эмиттерном переходе и соответственно возрастает ток через этот переход – ток эмиттера. Электроны этого тока инжектируются из эмиттера в базу и благодаря явлению диффузии проникают сквозь базу в область коллекторного перехода, увеличивая ток коллектора. Так как коллекторный переход работает при обратном напряжении, то в области этого перехода получаются объемные заряды. Между ними возникает электрическое поле. Оно способствует продвижению через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивает электроны в область коллекторного перехода.
Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате этой рекомбинации возникает ток базы, протекающий в проводе базы. Вследствие рекомбинации какое-то количество дырок каждую секунду исчезает, но такое же количество новых дырок каждую секунду возникает за счет того, что из базы уходит в направлении к полюсу источника такое же количество электронов. В базе не может происходить накопления какого-то большого количества электронов. Ток базы является бесполезным и даже вредным. Желательно, чтобы ток базы был как можно меньше. Для этого базу делают очень тонкой и уменьшают в ней концентрацию примесей, которая определяет концентрацию дырок. При выполнении этих условий меньшее количество электронов будет рекомбинировать в базе с дырками.