Одновременно с диффузным перемещением основных носителей через границу происходит и обратное перемещение носителей под действием электрического поля контактной разности потенциалов. Это поле перемещает дырки из п-области обратно в р-область и электроны из р-области обратно в п-область. При определенной температуре р-п-переход находится в состоянии динамического равновесия. Каждую секунду через границу в противоположных направлениях диффундирует определенное количество электронов и дырок, а под действием поля такое же их количество дрейфует в обратном направлении.
Перемещение носителей за счет диффузии является диффузионным током, а движение носителей под действием поля представляет собой ток проводимости. При динамическом равновесии перехода эти токи равны и противоположны по направлению. Поэтому полный ток через переход равен нулю, что и должно быть при отсутствии внешнего напряжения. Каждый из токов имеет электронную и дырочную составляющие. Величины этих составляющих различны, так как они зависят от концентрации и подвижности носителей. Высота потенциального барьера всегда автоматически устанавливается именно такой, при которой наступает равновесие, т. е. диффузионный ток и ток проводимости взаимно компенсируют друг друга.
11. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД ПРИ ДЕЙСТВИИ ПРЯМОГО НАПРЯЖЕНИЯ
Пусть источник внешнего напряжения подключен положительным полюсом к полупроводнику р-типа, а отрицательным полюсом – к полупроводнику п-типа.
Электрическое поле, создаваемое в р-п-переходе прямым напряжением, действует навстречу полю контактной разности потенциалов. Результирующее поле становится слабее и разность потенциалов в переходе уменьшается, т. е. высота потенциального барьера понижается, возрастает диффузионный ток. Ведь пониженный барьер может преодолеть большее количество носителей. Ток проводимости почти не изменяется, так как он зависит главным образом только от числа неосновных носителей, попадающих за счет своих тепловых скоростей в область р-п-перехода из объемов п– и р-областей.
При отсутствии внешнего напряжения диффузный ток и ток проводимости равны и взаимно компенсируют друг друга. При прямом напряжении iдиф> iпров и поэтому полный ток через переход, т. е. прямой ток, уже не равен нулю: iпр = iдиф – iпров> 0.
Если барьер значительно понижен, то iдиф»iпров и можно считать, что iпр ~ iдиф, т. е. прямой ток в переходе является диффузионным.
Явление введения носителей заряда через понизившийся потенциальный барьер в область, где эти носители являются неосновными, называется инжек-цией носителей заряда. Область полупроводникового прибора, из которой инжектируются носители, называется эмиттерной областью, или эмиттером. А область, в которую инжектируются неосновные для этой области носители заряда, называется базовой областью, или базой. Таким образом, если рассматривать инжекцию электронов, то п-область является эмиттером, а р-область – базой. Для инжекции дырок, наоборот, эмиттером служит р-область, а п-об-ласть является базой.
В полупроводниковых приборах обычно концентрация примесей, а следовательно, и основных носителей в п– и р-областях весьма различна. Поэтому инжекция из области с более высокой концентрацией основных носителей резко преобладает. Соответственно этой преобладающей инжекции и дают название эмиттер и база. Например, если пп»рр, то инжек-ция электронов из п-области в р-область значительно превосходит инжекцию дырок в обратном направлении. В данном случае эмиттером считают п-область, а базой р-область, так как инжекцией дырок можно пренебречь.
При прямом напряжении не только понижается потенциальный барьер, но и уменьшается толщина запирающего слоя. Это приводит к уменьшению сопротивления запирающего слоя. Его сопротивление в прямом направлении получается малым.
Поскольку высота барьера при отсутствии внешнего напряжения составляет несколько десятых долей вольта, то для значительного понижения барьера и существенного уменьшения сопротивления запирающего слоя достаточно подвести к р-п-переходу прямое напряжение всего лишь порядка десятых долей вольта. Поэтому значительный прямой ток можно получить при очень небольшом прямом напряжении.
Очевидно, что при некотором прямом напряжении можно вообще уничтожить потенциальный барьер в р-п-переходе. Тогда сопротивление перехода, т. е. запирающего слоя, станет близко к нулю и им можно будет пренебречь. Прямой ток в этом случае возрастет и будет зависеть от сопротивления объемов пи р-областей. Теперь уже этими сопротивлениями пренебрегать нельзя, так как именно они остаются в цепи и определяют величину тока.
12. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД ПРИ ОБРАТНОМ НАПРЯЖЕНИИ
Пусть источник внешнего напряжения подключен положительным полюсом к области п, а отрицательным – к области р. Под действием такого обратного напряжения через проход протекает очень небольшой обратный ток, что объясняется следующим образом. Поле, создаваемое обратным напряжением, складывается с полем контактной разности потенциалов. Результирующее поле усиливается. Уже при небольшом повышении барьера диффузионное перемещение основных носителей через переход прекращается, так как собственные скорости носителей недостаточны для преодоления барьера. А ток проводимости остается почти неизменным, поскольку он определяется главным образом числом неосновных носителей, попадающих в область р-п-перехода из объемов п-и р-областей. Выведение неосновных носителей через р-п-переход ускоряющим электрическим полем, созданным внешним напряжением, называют экстракцией носителей заряда.
Таким образом, обратный ток представляет собой практически ток проводимости, образованный перемещением неосновных носителей. Обратный ток получается очень небольшим, так как неосновных носителей мало и, кроме того, сопротивление запирающего слоя при обратном напряжении очень велико. Действительно, при повышении обратного напряжения поле в области перехода становится сильнее и под действием этого поля больше основных носителей «выталкивается» из пограничных слоев в глубь пи р– областей. Поэтому с увеличением обратного напряжения увеличивается не только высота потенциального барьера, но и толщина запирающего слоя. Этот слой еще больше обедняется носителями, и его сопротивление значительно возрастает.
Уже при сравнительно небольшом обратном напряжении обратный ток достигает почти постоянной величины, которую можно назвать током насыщения. Это объясняется тем, что количество неосновных носителей ограничено. С повышением температуры концентрация их возрастает и обратный ток увеличивается, а обратное сопротивление уменьшается. Рассмотрим несколько подробнее, как устанавливается обратный ток при включении обратного напряжения. Сначала возникает переходный процесс, связанный с движением основных носителей. Электроны в п-области движутся по направлению к положительному полюсу источника, т. е. удаляются от р-п-пере-хода. А в р-области, удаляясь от р-п-перехода, движутся дырки. У отрицательного электрода они рекомбинируют с электронами, которые приходят из провода, соединяющего этот электрод с отрицательным полюсом источника.
Поскольку из п-области уходят электроны, она заряжается положительно, так как в ней остаются положительно заряженные атомы донорной примеси. Подобно этому р-область заряжается отрицательно, ее дырки заполняются приходящими электронами и в ней остаются отрицательно заряженные атомы акцепторной примеси.
Рассмотренное движение основных носителей в противоположные стороны продолжается лишь малый промежуток времени. Такой кратковременный ток подобен зарядному току конденсатора. По обе стороны р-п-перехода возникают два разноименных объемных заряда, и вся система становится аналогичной заряженному конденсатору с плохим диэлектриком, в котором имеется ток утечки (его роль играет обратный ток). Но ток утечки конденсатора в соответствии с законом Ома пропорционален приложенному напряжению, а обратный ток р-п-перехода сравнительно мало зависит от напряжения.