¿De dónde proceden los elementos existentes de modo natural? Podríamos imaginar una creación separada de cada especie atómica. Pero el universo en su totalidad y en casi todas partes está formado por un 99% de hidrógeno y de helio, 4 los dos elementos más simples. De hecho el helio se detectó en el Sol antes de ser descubierto en la Tierra, de ahí su nombre (de Helios, uno de los dioses sol de Grecia). ¿Es posible que los demás elementos químicos hayan evolucionado de algún modo a partir de hidrógeno y de helio? Para equilibrar la repulsión eléctrica hay que aproximar mucho las piezas de materia nuclear de modo que entren en acción las fuerzas nucleares de corto alcance. Esto sólo puede suceder a temperaturas muy altas, cuando las partículas se mueven con tanta velocidad que la fuerza repulsiva no tiene tiempo de actuar: temperaturas de decenas de millones de grados. En la naturaleza estas temperaturas tan elevadas y sus correspondientes presiones sólo se dan de modo corriente en los interiores de las estrellas.
Hemos examinado nuestro Sol, la estrella más próxima, en varias longitudes de onda, desde las ondas de radio hasta la luz visible normal y los rayos X, radiaciones que proceden únicamente de las capas más exteriores. El Sol no es exactamente una piedra al rojo vivo, como pensó Anaxágoras, sino una gran bola gaseosa de hidrógeno y de helio, que brilla por su elevada temperatura, del mismo modo que un atizador brilla si se le pone al rojo. Anaxágoras tenía razón, por lo menos en parte. Las violentas tempestades solares producen erupciones brillantes que perturban las comunicaciones de radio en la Tierra; y penachos inmensos y arqueados de gas caliente, guiados por el campo magnético del Sol, las prominencias solares, que dejan enana a la Tierra. Las manchas solares, visibles a veces a simple vista al ponerse el sol, son regiones más frías donde la intensidad del campo magnético es más elevada. Toda esta actividad incesante desbordada y turbulenta se da en la superficie visible, relativamente fría. Sólo vemos unas temperaturas de unos 6 000 oC. Pero el interior oculto del Sol donde se genera la luz solar está a 40 millones de grados.
Las estrellas y sus planetas acompañantes nacen debido al colapso gravitatorio de una nube de gas y de polvo interestelares. La colisión de las moléculas gaseosas en el interior de la nube la calienta hasta el punto en el cual el hidrógeno empieza a fundirse dando helio: cuatro núcleos de hidrógeno se combinan y fonnan un núcleo de helio, con la emisión simultánea de un fotón de rayos gamma. El fotón sufre absorciones y emisiones por parte de la materia situada encima suyo y se va abriendo paso paulatinamente hacia la superficie de la estrella, perdiendo energía en cada paso, y llegando al final después de una épica jornada que ha durado un millón de años hasta la superficie, donde emerge en forma de luz visible y es radiado hacia el espacio. La estrella empieza a funcionar. El colapso gravitatorio de la nube preestelar ha quedado detenido. El peso de las capas exteriores de la estrella está sostenido ahora por las temperaturas y presiones elevadas generadas en las reacciones nucleares del interior. El Sol ha estado en esta situación estable durante los últimos cinco mil millones de años. Reacciones termonucleares como las que tienen lugar en una bomba de hidrógeno proporcionan energía al Sol gracias a una explosión contenida y continua, que convierte unos cuatrocientos millones de toneladas (4 x 1014 g) de hidrógeno en helio cada segundo. Cuando de noche miramos hacia lo alto y contemplamos las estrellas todo lo que vemos está brillando debido a fusiones nucleares distantes.
En la dirección de la estrella Deneb, en la constelación del Cisne, hay una enorme superburbuja brillante de gas muy caliente, producida probablemente por explosiones de supemovas (las muertes de estrellas) cerca del centro de la burbuja. En la periferia, la materia interestelar se ve comprimida por la onda de
choque de la supernova, poniendo en marcha nuevas generaciones de colapsos de nubes y de formación de estrellas. En este sentido las estrellas tienen padres; y como a veces sucede entre los hombres, un padre puede morir cuando nace el niño.
Las estrellas, como el Sol, nacen en lotes, en grandes complejos de nubes comprimidas como la Nebulosa de Orión. Estas nubes vistas desde el exterior parecen oscuras y tenebrosas. Pero en el interior están iluminadas brillantemente por las estrellas calientes que están naciendo (pág. 230). Más tarde las estrellas marchan de la guardería y se buscan la vida en la Vía Láctea como adolescentes estelares rodeadas todavía por mechones de nebulosidad incandescente, residuos de su gas amniótico, que permanecen unidos todavía gravitatoriamente a ellas. Las Pléyades (pág. 231) constituyen un ejemplo próximo. Como en las familias humanas, las estrellas que maduran viajan lejos de casa, y los hermanos se ven muy poco. En algún punto de la Galaxia hay estrellas quizás docenas de estrellas que son hermanas del Sol, fonnadas a partir del mismo complejo nebular, hace unos cinco mil millones de años. Pero no sabemos qué estrellas son. Podrían estar perfectamente al otro lado de la Vía Láctea.
La conversión del hidrógeno en helio en el centro del Sol no sólo explica el brillo del Sol con fotones de luz visible; también produce un resplandor de un tipo más misterioso y fantasmal: El Sol brilla débilmente con neutrinos, que, como los fotones, no pesan nada y se desplazan a la velocidad de la luz. Pero los neutrinos no son fotones. No son un tipo de luz. Los neutrinos tienen el mismo momento angular intrínseco, o espín, que los protones, los electrones y los neutrones; en cambio, los fotones tienen el doble de espín. La materia es transparente para los neutrinos, que atraviesan casi sin esfuerzo tanto la Tierra como el Sol. Sólo una diminuta fracción de ellos queda detenida por la materia interpuesta. Cuando levanto mis ojos hacia el Sol, durante un segundo pasan por ellos mil millones de neutrinos. Como es lógico no quedan detenidos en la retina, como les sucede a los fotones normales, sino que continúan sin que nada les moleste y atraviesan toda mi cabeza. Lo curioso es que si de noche miro hacia el suelo, hacia la parte donde debería estar el Sol (si no hubiese interpuesta la Tierra), pasa por mi ojo un número casi exactamente igual de neutrinos solares que fluyen a través de esta Tierra interpuesta tan transparente para los neutrinos como una placa de cristal es transparente para la luz visible.
Si nuestro conocimiento del interior solar es tan completo como imaginamos, y si además entendemos la física nuclear que origina los neutrinos, deberíamos poder calcular con bastante precisión los neutrinos solares que debería recibir un área dada como la de mi ojo en una unidad dada de tiempo, por ejemplo un segundo. La confirmación experimental del cálculo es mucho más difícil. Los neutrinos pasan directamente a través de la Tierra y es imposible atrapar un neutrino dado. Pero si su número es grande, una pequeña fracción entrará en interacción con la materia, y si las circunstancias son apropiadas podrá detectarse. Los neutrinos pueden convertir en raras ocasiones a los átomos de cloro en átomos de argón, átomos con el mismo número total de protones y de neutrones. Para detectar el flujo solar predicho de neutrinos se necesita una cantidad inmensa de cloro, y en consecuencia unos físicos norteamericanos vertieron grandes cantidades de líquido detergente en la Mina Homestake de Lea, en Dakota del Sur. Se microflltra luego el cloro para descubrir el argón de reciente producción. Cuanto más argón se detecta, más neutrinos se supone que han pasado. Estos experimentos indican que el Sol es más débil en neutrinos de lo que los cálculos predicen.
Esto supone un misterio real todavía no resuelto. El bajo flujo de neutrinos solares desde luego no pone en peligro nuestro concepto de la nueleosíntesis estelar, pero no hay duda que significa algo importante. Las explicaciones propuestas van desde la hipótesis de que los neutrinos se desintegran durante su trayecto entre el Sol y la Tierra hasta la idea de que los fuegos nucleares en el interior solar han quedado provisionalmente interrumpidos y que en nuestra época la luz solar se genera parcialmente por una lenta contracción gravitatoria. Pero la astronomía de neutrinos es muy nueva. De momento estamos asombrados por haber creado un instrumento que pueda atisbar directamente el corazón ardiente del Sol. A medida que aumente la sensibilidad del telescopio de neutrinos, será posible, quizás, sondear la fusión nuclear en los interiores profundos de estrellas cercanas.