Los hombres crecieron en los bosques y nosotros les tenemos una afinidad natural. ¡Qué hermoso es un árbol que se esfuerza por alcanzar el cielo! Sus hojas recogen la luz solar para fotosintetizarla, y así los árboles compiten dejando en la sombra a sus vecinos. Si buscamos bien veremos a menudo dos árboles que se empujan y se echan a un lado con una gracia lánguida. Los árboles son máquinas grandes y bellas, accionadas por la luz solar, que toman agua del suelo y dióxido de carbono del aire y convierten estos materiales en alimento para uso suyo y nuestro. La planta utiliza los hidratos de carbono que fabrica como fuente de energía para llevar a cabo sus asuntos vegetales. Y nosotros, los animales, que somos en definitiva parásitos de las plantas, robamos sus hidratos de carbono para poder llevar a cabo nuestros asuntos. Al comer las plantas combinamos los hidratos de carbono con el oxígeno que tenemos disuelto en nuestra sangre por nuestra propensión a respirar el aire, y de este modo extraemos la energía que nos permite vivir. En este proceso exhalamos dióxido de carbono, que luego las plantas reciclan para fabricar más hidratos de carbono. ¡Qué sistema tan maravillosamente cooperativo! Plantas y animales que inhalan mutuamente las exhalaciones de los demás, una especie de resucitación mutua a escala planetario, boca a estoma, impulsada por una estrella a 150 millones de kilómetros de distancia.
Hay decenas de miles de millones de tipos conocidos de moléculas orgánicas. Sin embargo en las actividades esenciales de la vida sólo se utiliza una cincuentena. Las mismas estructuras se utilizan una y otra vez de modo conservador e ingenioso, para llevar a cabo funciones diferentes. Y en el núcleo mismo de la vida en la Tierra las proteínas que controlan la química de la célula y los ácidos nucleicos que transportan las instrucciones hereditarias descubrimos que estas moléculas son esencialmente las mismas en todas las plantas y animales. Una encina y yo estamos hechos de la misma sustancia. Si retrocedemos lo suficiente, nos encontramos con un antepasado común.
La célula viviente es un régimen tan complejo y bello como el reino de las galaxias y de las estrellas. La exquisita maquinaria de la célula ha ido evolucionando penosamente durante más de cuatro mil millones de años. Fragmentos de alimento se metamorfosean en maquinaria celular. La célula sanguínea blanca de hoy son las espinacas con crema de ayer. ¿Cómo consigue esto la célula? En su interior hay una arquitectura laberíntico y sutil que mantiene su propia estructura, transforma moléculas, almacena energía y se prepara para copiarse a sí misma. Si pudiéramos entrar en una célula, muchas de las manchas moleculares que veríamos serían moléculas de proteína, algunas en frenética actividad, otras simplemente esperando. Las proteínas más importantes son enzimas, moléculas que controlan las reacciones químicas de la célula. Las enzimas son como los obreros de una cadena de montaje, cada una especializada en un trabajo molecular concreto: por ejemplo el Paso 4 en la construcción del nucleótido fosfato de guanosina, o el Paso 11 en el desmontaje de una molécula de azúcar para extraer energía, la moneda con que paga para conseguir que se lleven a cabo los demás trabajos celulares. Pero las enzimas no dirigen el espectáculo. Reciben sus instrucciones y de hecho ellas mismas son construidas así mediante órdenes enviadas por los que controlan. Las moléculas que mandan son los ácidos nucleicos. Viven secuestrados en una ciudad prohibida en lo más profundo de todo, en el núcleo de la célula.
Si nos sumergiéramos por un poro en el núcleo de la célula nos encontraríamos con algo parecido a una explosión en una fábrica de espaguetis: una multitud desordenada de espirales e hilos, que son los dos tipos de ácidos nucleicos: el ADN, que sabe lo que hay que hacer, y el ARN, que lleva las instrucciones emanadas del ADN al resto de la célula. Ellos son lo mejor que han podido producir cuatro mil millones de años de evolución, y contienen el complemento completo de información sobre la manera de hacer que una célula, un árbol o una persona funcione. La cantidad de información en el ADN del hombre escrito en el lenguaje corriente ocuparía un centenar de volúmenes gruesos. Además de esto, las moléculas de ADN saben la manera de hacer copias idénticas de sí mismas con sólo muy raras excepciones. La cantidad de cosas que saben es extraordinaria.
El ADN es una hélice doble, con dos hilos retorcidos que parecen una escalera en espiral. La secuencia u ordenación de los nucleótidos a lo largo de cada uno de los hilos constituyentes es el lenguaje de la vida. Durante la reproducción las hélices se separan, ayudadas por una proteína especial que las destornilla, y cada cual sintetiza una copia idéntica de la otra a partir de bloques constructivos de nucleótido que flotan por allí en el líquido viscoso del núcleo de la célula. Una vez destornillada la doble hélice una enzima notable llamada polimerasa del ADN contribuye a asegurar que la copia se realiza de modo casi perfecto. Si se comete un error, hay enzimas que arrancan lo equivocado y sustituyen el nucleótido falso por el correcto. Estas enzimas son una máquina molecular con poderes asombrosos.
El ADN del núcleo, además de hacer copias exactas de sí mismo la herencia es precisamente esto dirige las actividades de la célula que es precisamente el metabolismo sintetizando otro ácido nucleico llamado ARN mensajero, el cual pasa a las provincias extranucleares y controla allí la construcción, en el momento adecuado y en el lugar adecuado, de una enzima. Cuando todo ha finalizado el resultado es la producción de una molécula única de enzima que se dedica luego a ordenar un aspecto particular de la química de la célula.
El ÁDN del hombre es una escalera con una longitud de mil millones de nucleótidos. Las combinaciones posibles de nucleótidos son en su mayor parte tonterías: causarían la síntesis de proteínas que no realizarían ninguna función útil. Sólo un número muy limitado de moléculas de ácido nucleico son de alguna utilidad para formas de vida tan complicadas como nosotros. Incluso así el número de maneras útiles de construir ácidos nucleicos es increíblemente elevado: probablemente muy superior al número total de electrones y de protones del universo. Por lo tanto el número de seres humanos posible es muy superior al del número de personas que hayan vivido nunca: el potencial no utilizado de la especie humana es inmenso. Ha de haber manera de construir ácidos nucleicos que funcionen mucho mejor sea cual fuere el criterio escogido que cualquier persona que haya vivido nunca. Por suerte todavía ignoramos la manera de montar secuencias distintas de nucleótidos que permitan construir tipos distintos de seres humanos. En el futuro es muy posible que estemos en disposición de montar nucleótidos siguiendo la secuencia que queramos, y de producir cualquier característica que creamos deseable: una perspectiva que nos hace pensar y nos inquieta.
La evolución funciona mediante la mutación y la selección. Se pueden producir mutaciones durante la reproducción de la molécula si la enzima polimerasa del ADN comete un error. Pero es raro que lo haga. Las mutaciones se producen también a causa de la radiactividad, de la luz ultravioleta del Sol, de los rayos cósmicos o de sustancias químicas en el medio ambiente, todo lo cual puede cambiar los nucleótidos o atar en forma de nudos a los ácidos nucleicos. Si el número de mutaciones es demasiado elevado, perdemos la herencia de cuatro mil millones de años de lenta evolución. Si es demasiado bajo, no se dispondrá de nuevas variedades para adaptarse a algún cambio futuro en el medio ambiente. La evolución de la vida exige un equilibrio más o menos preciso entre mutación y selección. Cuando este equilibrio se consigue se obtienen adaptaciones notables.