Литмир - Электронная Библиотека
Содержание  
A
A

3. Третій пріемъ составленъ Петценштейнеромъ, нѣмецкимъ математикомъ XV вѣка. Въ немъ множимое и произведеніе пишется по нашему, а множитель выходитъ изъ вертикальныхъ колоннъ и ставится сбоку, справа наискось. Расположеніе такое:

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_008.jpg

Какой смыслъ и какая цѣль въ подобномъ подписываніи множителя сбоку? Объ этомъ догадаться не трудно. У насъ въ примѣрѣ взято двузначное число 97, а иногда случается вмѣсто него брать трехзначное, четырехзначное и т. д.; тогда легко бываетъ забыть, на какія цифры мы уже умножали, и на какія осталось умножать; чтобы не забыть, Петценштейнеръ и пишетъ каждую цифру при своемъ произведеніи. Еще ранѣе его Радульфъ Лаонскій († 1131) предлагалъ, впрочемъ на абакѣ, особенные кружки изъ дерева или изъ камня, чтобы приставлять ихъ къ тѣмъ разрядамъ множимаго и множителя, которые перемножаются. Надо сознаться, что Адамъ Ризе уступаетъ Петценштейнеру въ его заботахъ о множителѣ, и наши школьники по способу Адама Ризе нерѣдко пропускаютъ, особенно на первыхъ порахъ, цифры множителя. Для нихъ тоже не мѣшало бы на первое время, когда они еще учатся умиожать, пользоваться чѣмъ-нибудь въ родѣ бумажки, чтобы они могли закрывать тѣ раз-ряды, на которые еще не умножали.

4. Четвертый способъ принадлежитъ Кебелю, нѣмецкому ученому XVI вѣка. Множимое и множитель пишутся такъ же, какъ и у насъ, но въ произведеніи порядокъ подписыванія нарушается, и единицы отступаютъ вправо, вмѣсто того, чтобъ имъ стоять подъ единицами. Зачѣмъ это понадобилось Кебелю, и понять нельзя: нѣтъ въ зтой формѣ ни удобства, ни вообще какой-нибудь замѣтной цѣли; единственно, что тутъ можно думать, это то, что Кебель захотѣлъ изобрѣсти свой способъ и изобрѣлъ довольно неудачный.

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_009.jpg

Впрочемъ, на способѣ Кебеля учащіеся могутъ убѣдиться въ томъ, что неполныя произведенія можно подписывать какъ угодно, и не подъ разрядами производителей, лишь бы только выполнялось условіе, что единицы складываются съ единицами, десятки съ десятками, и т. д.

5. Пятый способъ отличается еще большей свободой въ подписываніи, въ немъ и отдѣльныя произведенія располагаются прямо другъ подъ другомъ, не обращая вниманія на то, что единицы оказались наискось отъ единицъ и десятки наискось отъ десятковъ; разумѣется, для отвѣта оно безразлично, складывать ли разряды вертикально или наклонно, лишь бы только не сложить единицъ съ дееятками; есть въ этомъ способѣ много оригинальности и пожалуй изящества, но мало удобства. Названіе его «per quadrilatero» и если перевести это выраженіе съ итальянскаго языка на русскій, то оно будетъ значить «способъ четыреугольника».

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_010.jpg

Прежде всего чертится рѣшетка; потомъ въ ней располагаются отдѣльныя произведенія такъ, что ихъ крайнія цифры стоятъ другъ подъ другомъ вертикально; сложеніе разрядовъ идетъ наискось, и цифры произведенія размѣщаются вправо и внизу; читать ихъ надо слѣва. Все это очень интересно, но для практическаго примѣненія мало годится. Это скорѣй ариѳметическое украшеніе, забава.

6. Всѣ предыдущіе пять способовъ требуютъ такого жъ основного порядка умноженія, какой и мы примѣняемъ всегда у себя; разница только въ подписываніи данныхъ чиселъ и искомыхъ: въ то время, какъ мы стремимся все расположить въ вертикальныхъ колоннахъ, Петценштейнеръ выноситъ множителя на сторону, Кебель отступаетъ съ произведеніемъ вправо, а по способу «четырехуголъника» разряды пишутся въ діагональномъ направленіи, т.-е. наискось; но вездѣ умноженіе начинается неизмѣнно съ низшихъ разрядовъ. Теперь мы обратимся къ случаямъ, когда оно начинается съ высшихъ разрядовъ, а не съ низшихъ. Это бываетъ и у насъ, но только при томъ условіи, если не приходится перечеркивать и исправлять написанныхъ цифръ. А цифръ не бываетъ, во-первыхъ, при устномъ счетѣ и, во-вторыхъ, при выкладкахъ на счетахъ. Поэтому въ обоихъ этихъ случаяхъ удобно начинать умноженіе съ высшихъ разрядовъ, тѣмъ болѣе, что и выговариваніе чиселъ и откладываніе ихъ на счетахъ идетъ все съ высшихъ разрядовъ. Но письменное умноженіе начинать съ лѣвой руки неудобно, потому что, если, напр., мы умножимъ десятки и запишемъ ихъ и потомъ перейдемъ къ единицамъ, то отъ умноженія единицъ могутъ получиться еще десятки, и намъ придется написанную цифру десятковъ стирать и замѣнять новой.

Далеко не безразлично, съ какихъ разрядовъ множимаго начинать письменное дѣйствіе, съ высшихъ или низшихъ. Послѣднее удобнѣе. Что касается множителя, то въ сущности одна привычка заставляетъ насъ начинать съ единицъ, потому что можно съ такимъ же правомъ умножать сперва на высшіе разряды множителя и потомъ постепенно переходить къ низшимъ, лишь бы вѣрно подписывать произведенія, т.-е. десятки подъ десятками, а единицы подъ единицами. Покажемъ это на примѣрѣ:

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_011.jpg

Еще виднѣе въ многозначныхъ числахъ:

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_012.jpg

7. Седьмой способъ принадлежитъ Вендлеру и отличается отъ шестого единственно тѣмъ же самымъ, чѣмъ второй отъ перваго, именно лишними нулями на мѣстѣ десятковъ, сотенъ и т. д. Если вписать эти нули, то 33×4567 изобразится въ такомъ видѣ:

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_013.jpg

8. Восьмой способъ устный, встрѣчается у Брамегупты, ученаго индуса VII в. по Р. X. Онъ совершенно сходенъ съ нашимъ устнымъ пріемомъ, да такъ и доджно быть, потому что индусы, главнымъ образомъ, изобрѣтали и совершенствовали устный счетъ, они были первыми спеціалистами въ этомъ родѣ вычисленій; они вычисляли отдѣльныя произведенія въ умѣ, писали ихъ строкой и потомъ складывалн. Лишнимъ, на нашъ взглядъ, могло бы показаться развѣ то, что множимое переписывается нѣсколько разъ, именно столько разъ, сколько разрядовъ во множителѣ.

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_014.jpg

9. Девятымъ пріемомъ умноженіе производится тоже сначала на десятки, а потомъ на единицы; если бы были сотни, то, конечно, сперва на сотни. Умноживши на десятки, произведеніе подписываютъ точно такъ же, какъ это сдѣлали бы и мы, но съ единицами идегь иначе.

Как постепенно дошли люди до настоящей арифметики [без таблиц] - i_015.jpg

Когда мы умножимъ 456 на 7, то получимъ 3192. Изъ нихъ 319 десятковъ помѣщаемъ внизу, во второй строкѣ, подъ тѣми цифрами, какія соотвѣтствуютъ имъ по значенію, а 2 единицы вверху, рядомъ съ 4 десятками, прямо подъ единицами множителя, въ виду того, что это мѣсто ничѣмъ не занято. Подобная система писать цифры какъ можно выше, на свободныхъ мѣстахъ, проявляется у многихъ авторовъ, какъ это мы увидимъ впослѣдствіи; порядокъ этотъ довольно безвредный, потому что, гдѣ бы ни писать, лишь бы написать вѣрно подъ своимъ разрядомъ: но онъ можетъ оказаться и неудобнымъ тогда, когда счетчикъ собьется: тогда очень трудно разобраться въ рядѣ цифръ, найти, какая изъ нихъ принадлежитъ къ какому произведению, и исправить ошибку. Этотъ девятый способъ приписывается Апіану (XVI в.).

10. Въ предыдущихъ 4 способахъ дѣйствіе начиналось съ высшихъ разрядовъ множителя, и въ этомъ только, главнымъ образомъ, и заключалась ихъ особенность; цифры подписывались почти такъ же, какъ у насъ, и вообще большого измѣненія противъ нормальнаго порядка не было. Но теперь мы перейдемъ къ болѣе грубымъ и старымъ пріемамъ, въ которыхъ уклоненій отъ нашего уже гораздо больше. Отличіемъ ихъ является полная механичность, безъ всякаго вычисленія въ умѣ; составители зтихъ пріемовъ держатся слишкомъ невысокаго мнѣнія о понятливости и сообразительности своихъ учениковъ, ничего не довѣряютъ устному счету и рекомендуютъ все записывать, даже до мелочей, и притомъ по опредѣленнымъ, точно установленнымъ формамъ. Напримѣръ, когда умножаются десятки, то къ ихъ произведенію нельзя прямо прибавить тѣхъ десятковъ, которые получились отъ единицъ, а надо написать отдѣльно и сложить ихъ въ самомъ концѣ, когда всѣ мелкія умноженія будутъ выполнены. Эти тяжеловѣсные, громоздкіе способы въ настоящее время всѣми оставлены, и никому въ голову не придетъ ими воспользоваться, между тѣмъ, въ XV–XVII столѣтіи, въ эпоху наиболѣе усиленной работы надъ ариѳметикой, когда индусская система проникла и въ народъ, и въ школу, эти способы были ходячими и общепринятыми. Сейчасъ они не имѣютъ никакой цѣны, потому что требуютъ много лишняго письма и лишняго времени для вычисленій, мы же ихъ приводимъ съ тою цѣлью, чтобъ показать, изъ какихъ первоначальныхъ и несовершенныхъ формъ образовались наши болѣе совершенныя.

19
{"b":"122337","o":1}