Литмир - Электронная Библиотека
A
A

Литература

1. Грязное Б. С. Природа, 1977, №4, С. 60-64.

2. Корогодин В. И. Природа, 1985, №2, с. 3-14.

3. Корогодин В. И. Радиобиология, 1982, т. 22, в.2, С. 147-154.

4. Шальнов М. И. Радиобиология, 1977, т. 17, в.5, С. 652.

5. Курсанов Л. И. Комарницкий Н. А., Флеров Б. К. Курс низших растений. М.-Л., Госмедгиз, 1933.

6. Райков И. Б. Ядро простейших. Л., "Наука", 1978.

7. Холл Д., Рао К. Фотосинтез. М., "Мир", 1983.

8. Северцов А. Н. Морфологические закономерности эволюции. В кн.: Собр.соч., т. V, М.-Л., Изд. АН СССР, 1949.

Глава пятая

ДИНАМИКА ИНФОРМАЦИИ

Возникновение генетической информации

Из сказанного выше следует, что проблема возникновения самовоспроизводящихся информационных биологических систем, вместе с кодирующей их информацией, есть не что иное, как проблема происхождения жизни. Действительно, как писал К. X. Уоддингтон [1], "Система может быть названа живой, если в ней закодирована передаваемая по наследству информация, если эта информация иногда претерпевает изменения и если измененная информация также наследуется" (стр.13).

Как уже отмечалось (см. главу 3), идея о том, что живые объекты представляют собой такое единство генетических (т. е. информационных) и негенетических компонентов, что последние предназначены для обеспечения воспроизведения первых, была сформулирована Г. Меллером [2]. Тем самым были поставлены три взаимосвязанных вопроса: что такое генетические структуры? как они могли образоваться? как они контролируют синтез структур негенетических? Первый и третий вопросы сейчас, можно считать, решены (см., напр., [3]). Наследственные структуры представляют собой молекулы РНК или ДНК, в которых генетическая информация записана последовательностью четырех оснований, а синтез негенетических структур осуществляется через промежуточный этап – матричный синтез т-РНК и и-РНК с участием специализированных устройств – рибосом. Остается ответить на вопрос о том, могли ли и как именно спонтанно возникнуть первичные молекулярные носители информации (а), информация, в них содержащаяся (б), а также реализующие ее устройства (в). Все нынешние попытки решить проблему происхождения жизни вращаются, по существу, вокруг этих трех вопросов.

Как было упомянуто в предыдущих главах, новая информация может быть создана в процессе естественного дарвиновского отбора. Остановимся на этом подробнее. Какие свойства являются необходимыми для отбора и эволюции?

Система, обладающая способностью к самоотбору, должна стабилизировать свои определенные структуры, отбирая наиболее благоприятные варианты среди распределения возникающих конкурентов, имеющихся в каждый момент времени. В такой системе должен быть заложен элемент обратной связи, осуществляющий закрепление устойчивости наиболее выгодных вариантов. Необходимое свойство обратной связи – это способность к автокатализу, т. е. самовоспроизведению.

Необходимыми свойствами для дарвинского поведения на молекулярном уровне являются:

1. Метаболизм - как образование, так и разложение молекулярных видов должны быть независимы друг от друга и спонтанны; отбор должен действовать только на промежуточные состояния, которые образуются из высокоэнергетических предшественников и превращаются в низкоэнергетические отходы. Система должна использовать освобождающиеся энергию и вещество.

Система должна быть далека от равновесия.

2. Самовоспроизведение - способность инструктировать свой собственный синтез.

3. Мутабильность. Точность самовоспроизведения всегда ограничена хотя бы из-за теплового шума. Ошибки копирования – основной источник новой информации. Но для темпа мутаций существует пороговое значение, при котором скорость эволюции максимальна и не может быть превышена без потери всей информации.

Здесь мы должны отметить новое, по сравнению с критериями эволюции добиологического периода, требование самовоспроизведения, т. е. автокатализа. Дарвиновский отбор таких самореплицирующихся единиц гарантирует эволюцию информации, будь то короткие цепочки нуклеиновых кислот или сложные организмы.

Первыми самовоспроизводящимися единицами были короткие цепочки нуклеиновых кислот. Они воспроизводимо реплицировали цепи длиной только 50-100 нуклеотидов [4]. Для дальнейшей эволюции, – увеличения точности копирования и количества информации – требовались катализаторы, которые тоже должны были воспроизводиться (аппарат трансляции). Первыми самовоспроизводящимися структурами нуклеиновых кислот с устойчивым информационным содержанием были молекулы типа т-РНК. Для самой простой системы аппарата трансляции требуется количество информации на порядок больше, чем в этих первичных молекулах т-РНК. Аппарат трансляции должен был включать несколько таких единиц, имеющих сходные функции, но разную специфичность. Этого нельзя было достичь посредством сочленения их в одну большую единицу (из-за порога ошибок) или в компартмент (из-за конкуренции между ними). Это было возможно лишь при образовании функциональных связей между всеми самовоспроизводящимися единицами.

В 70-х годах М. Эйген с сотрудниками [5] разработал и опубликовал ряд работ, в которых показал, что дальнейшее накопление и эволюция информации возможны на основе гиперциклов.

Гиперцикл – это средство объединения самовоспроизводящихся единиц в устойчивую систему, способную к эволюции. Гиперцикл построен из автокатализаторов, или циклов воспроизведения, которые связаны посредством циклического катализа, наложенного на систему. Гиперцикл основан на нелинейном автокатализе (второго или более высокого рангов), который обязательно включает связи типов стимуляции, репрессии и дерепрессии. Это и есть то отличительное свойство живых организмов, о котором пишет Н. Н. Моисеев, – только живые организмы имеют отрицательные обратные связи [6]. Никакая другая организация (компартмент, нециклические цепи) не способны обеспечить:

- конкуренцию в популяциях самореплицирющих единиц дикого типа, что гарантирует сохранение их информации;

- сосуществование нескольких популяций самореплицирующихся единиц и популяций их мутантов;

- объединение этих единиц в систему, способную к эволюции, где преимущество одной единицы может быть использовано всеми членами системы.

Для существования каталитического цикла достаточно, чтобы один из интермедиатов был катализатором для одной из последующих реакций. Каталитический цикл, имеющий биологическое значение, – репликация одноцепочечной РНК [5, 7]. нтермедиаты (плюс- и минус- цепи) участвуют в цикле как матрицы для своего взаимного воспроизведения. Нуклеозидтрифосфаты являются высокоэнергетическим строительным материалом. Каталитический гиперцикл состоит из самореплицирующихся единиц с двойными каталитическими функциями: в качестве автокатализатора интермедиат способен инструктировать свое собственное воспроизведение, а также оказывать каталитическое воздействие на воспроизведение следующего интермедиата.

Одним из уникальных свойств гиперциклов является их селекционное поведение. Отбор гиперцикла – "раз и навсегда". В обычной дарвиновской системе благоприятные мутанты имеют селективное преимущество и могут размножаться, их способность к росту не зависит от размера популяции. В гиперцикле селективне преимущество является функцией численности популяции из-за существенно нелинейных свойств гиперциклов, и уже существующий гиперцикл не может быть заменен "новичком", так как новый вид всегда появляется сначала в количестве одной (или нескольких) копий. Это свойство может объяснить универсальность генетического кода. Этот код окончательно установился не потому, что был единственно возможным, а потому, что здесь работал механизм "раз и навсегда" [8].

35
{"b":"121459","o":1}