Литмир - Электронная Библиотека

Ньютон нередко утверждал с большой настойчивостью, что он “не сочиняет гипотез” (“Hypotheses non fingo” – знаменитое изречение, попавшее даже в его “Principia”). Но таково уж свойство человеческого ума, что мысль всегда забегает дальше факта и даже опыт всегда является проверкою какой-нибудь гипотезы.

Самое простое и, по-видимому, естественное представление о свете состоит в том, что свет есть некоторое вещество. Несомненно, что движение частичек светящегося, то есть испускающего лучи тела играет огромную роль в световых явлениях и даже определяет их: помимо горения или других подобных явлений не может быть света; горение того или иного вещества определяет преломляемость, а стало быть, и цвет и другие качественные особенности лучей, исходящих из пламени. Но это влияние вещества на свойства света вовсе еще не доказывает, что свет распространяемся в пространстве посредством истечения весьма малых светящихся частичек, как учит так называемая теория истечения, подробно развитая Ньютоном. При ближайшем рассмотрении эта теория, наоборот, оказывается весьма маловероятною. Чрезвычайно трудно допустить, чтобы даже мельчайшие частицы вещества могли двигаться с такою чудовищною скоростью, какая необходима для объяснения действительной скорости распространения света. Непонятно также, как все эти бесчисленные массы светящихся частиц, совершающих чудовищную пляску, могут давать сколько-нибудь правильные явления. Наконец многие хорошо изученные явления показывают, что гораздо правдоподобнее другая гипотеза, приписывающая передачу света свойствам особой среды. Так, сравнение со звуком напрашивается само собою. Когда, например, звучит камертон, то очевидно, что звук не передается носящимися по воздуху звучащими частичками, отрывающимися от камертона, но передача происходит через воздух. Это доказывает прямой опыт, так как в безвоздушном пространстве дрожание камертона не дает звука. По аналогии можно предположить, что и свет передается при помощи некоторого вещества, еще более упругого и подвижного, чем воздух. Это гипотетическое вещество названо эфиром. Нельзя с уверенностью утверждать, составляет ли эфир нечто совершенно разнородное с обыкновенной материей или только является особым состоянием вещества, отличающимся от газообразного состояния настолько же, насколько это последнее отличается от твердого: пока не будет доказана возможность превращения обыкновенной материи в эфир и обратно, до тех пор более вероятною остается гипотеза двойственности, дуализма материального мира.

Нельзя сказать, чтобы Ньютону было чуждо понятие эфира. Наоборот, он неоднократно рассуждал об эфирной гипотезе, то отвергал, то принимал ее, но ни в том, ни в другом случае не соглашался допустить, чтобы свет происходил от волнообразного движения эфира или хотя бы обыкновенной материи. Ясно, что он отвергал не столько эфир, сколько самый характер движения, то есть уподобление световых явлений звуку или движению кругов на поверхности воды, в которую брошен камень. Конечно, такой сильный ум не мог отвергать заманчивых и блестящих обобщений без всякого основания, и Ньютон в своем отрицании указывал на слабые стороны противного учения, чем немало способствовал его усовершенствованию и окончательному торжеству.

Дальнейшее развитие теорий Ньютона и его борьба с противными учениями относятся, однако, к более позднему времени. С целью выяснения последовательного развития идей Ньютона необходимо сначала рассмотреть его наиболее ранние исследования и открытия в других областях физики и математики.

ГЛАВА III

Знаменитое яблоко. – Действительная история идеи всемирного тяготения. – Предшественники Ньютона: Кеплер, Джильберт, Гук. – Математическая подготовка. – Бином Ньютона и теория бесконечно малых. – История дифференциального исчисления

В 1666 году в Кембридже появилась какая-то эпидемия, которую по тогдашнему обычаю сочли чумой, и Ньютон удалился в свой Вульсторп. Здесь в деревенской тиши, не имея под рукой ни книг, ни приборов, живя почти отшельнической жизнью, двадцатичетырехлетний Ньютон предался глубоким философским размышлениям. Плодом их было гениальнейшее из его открытий – учение о всемирном тяготении.

Был летний день. Ньютон любил размышлять, сидя в саду, на открытом воздухе. Предание сообщает, что размышления Ньютона были прерваны падением налившегося яблока. Знаменитая яблоня долго хранилась в назидание потомству и лишь в нашем столетии засохла, была срублена и превращена в исторический памятник в виде скамьи.

Ньютон давно размышлял о законах падения тел, и весьма возможно, что в частности падение яблока опять навело его на размышления. Говорят, что от мыслей, внушенных этим падением, Ньютон перешел к вопросу: везде ли на земном шаре падение тел происходит одинаково? Так, например, можно ли утверждать, что в высоких горах тела падают с такою же скоростью, как и в глубоких шахтах?

Мысль, что тела падают на землю вследствие притяжения их земным шаром, была далеко не нова: это знали еще древние, например Платон. Но как измерить силу этого притяжения? Везде ли на земном шаре оно одинаково и как далеко оно простирается? Вот вопросы, которые до Ньютона смущали ученых и философов, не приводя к какому-либо точному количественному результату. Размышляя о падении тел на землю и делая все более и более широкие обобщения, Ньютон поставил вопрос: не простирается ли земное притяжение далеко за пределы атмосферы, например, до самой Луны, и не есть ли движение Луны явление вполне аналогичное падению хотя бы яблока? Вот основная мысль, пришедшая Ньютону в достопамятное лето 1666 года. Необходимо было ее проверить и доказать математически. Для этого надо было еще открыть основную формулу, математический закон движения.

Каким образом открыл Ньютон этот закон, для которого аналогия с падением яблока уже не могла иметь никакого значения? Сам Ньютон писал много лет спустя, что математическую формулу, выражающую Закон всемирного тяготения, он вывел из изучения знаменитых законов Кеплера. Возможно, однако, что его работу в этом направлении значительно ускорили исследования, производившиеся им в области оптики. Закон, которым определяется “сила света” или “степень освещения” данной поверхности, весьма схож с математической формулой тяготения. Простые геометрические соображения и прямой опыт показывают, что при удалении, например, листа бумаги от свечи на двойное расстояние, степень освещения поверхности бумаги уменьшается, и притом не вдвое, а в четыре раза, при тройном расстоянии – в девять раз и так далее. Это и есть закон, который во времена Ньютона называли кратко законом “квадратной пропорции”; выражаясь точнее, следует сказать, что “сила света обратно пропорциональна квадратам расстояний”. Весьма естественно для такого ума, как Ньютон, было попытаться приложить этот закон к теории тяготения.

Раз напав на мысль, что притяжение Луны Землею определяет движение земного спутника, Ньютон неминуемо пришел к подобной же гипотезе относительно движения планет вокруг Солнца. Но ум его не довольствовался непроверенными гипотезами. Он стал вычислять, и понадобились десятки лет для того, чтобы его предположения превратились в грандиознейшую систему мироздания.

Чтобы понять все значение основной мысли Ньютона, необходимо напомнить хотя бы в самых общих чертах, в каком положении находилась небесная механика до Ньютона. За сто лет до его рождения Коперник, умирая, успел подержать в руках только что отпечатанный экземпляр своей книги “О движениях небесных тел”. В этой книге была разрушена теория древних, заставлявших Солнце вращаться вокруг Земли: оно было сделано центром всей планетной системы. Эта книга была плодом тридцатишестилетних вычислений и наблюдений. Датский астроном Тихо Браге хотя и мало подвинул теорию Коперника, однако много содействовал ее установлению своими чрезвычайно тщательными наблюдениями. Великий Галилей, умерший за год до рождения Ньютона, пострадал за защиту учения Коперника против фанатиков и суеверов и своими научными исследованиями падения тел значительно развил и расширил научную механику. Кеплер, соединявший крупный математический талант с изумительным трудолюбием и фантазией поэта, в течение семнадцати лет изучал движения планеты Марс и почти ощупью искал законы этого движения. После бесчисленных неудачных попыток он установил свои знаменитые законы эллиптического движения, показав, что планеты движутся по эллипсам, что Солнце находится в фокусе этих эллипсов и что между временем обращения и средним расстоянием планет от Солнца существует весьма простая математическая зависимость.

4
{"b":"114038","o":1}