В первый год, полный юношеского азарта (ведь мне было всего сорок пять лет), я прочел двадцать семь лекций и провел пятнадцать семинаров, но постепенно угомонился и под конец приблизился к норме устава и ко всем моим коллегам. Надо было искать новые темы, т. е. новые для меня. С теперешней специализацией физики не ходят на лекции, предмет которых даже слегка отдален от их собственных интересов. Когда профессор Коллежа берется излагать тему, которая не совпадает с его собственными исследованиями, перед ним возникает щекотливая проблема: желательно, чтобы слушатели интересовались этой темой и даже сами работали бы над ней, потому что иначе они не придут на лекции; но нежелательно, чтобы они знали предмет гораздо лучше профессора, который тогда ежеминутно рискует потерять свое лицо.
Для новичка-профессора единственной возможностью заинтересовать слушателей-специалистов является тогда оригинальное изложение, к которому специалисты не привыкли. Иногда мне это удавалось. Конечно, очень важно, чтобы эта тема интересовала самого профессора. Из моих двадцати трех курсов не более половины были посвящены самому ядерному магнетизму, хотя все так или иначе имели дело со спинами. Двадцать три курса, а не двадцать пять, потому что профессор Коллежа может при желании воспользоваться «саббатическим» отпуском (впервые так названным в американских университетах, где он дается каждый седьмой год), т. е. освободиться на год от обязанности преподавать, обыкновенно, чтобы путешествовать, и я дважды брал такой отпуск.
Иногда выражается мнение, что для Коллежа обязанность преподавать — пережиток прошлого, который отнимает драгоценное время у научной работы, и который надо упразднить, как это делается в некоторых выдающихся исследовательских учреждениях. Я считал бы это опасной ошибкой: обязанность преподавать каждый год курс, способный заинтересовать научных работников, младших или старших, — лучшее противоядие от окостенения или просто безделья. Так легко ничего не делать тому, кто поднялся на известный уровень научной иерархии и «руководит» работой других! Минута правды наступает тогда, когда стоишь перед слушателями и замечаешь зевающие рты или отсутствующие взгляды, и нет обиды хуже этой. Все предыдущее сказано для того, чтобы объяснить, боюсь слишком длинно, почему мои лекции толкали меня к «горизонтальности».
Четвертой причиной является сама природа ядерного магнетизма, который сам по себе или через его применения соприкасается с невероятным числом других предметов: всей физикой конденсированного состояния, статистической механикой, физикой ядерной и элементарных частиц, сверхнизких температур, химией, биологией, а сегодня, благодаря ЯМР-изображению, с клинической медициной. Все это превращает специалиста по ядерному магнетизму в человека эпохи Возрождения, как я напыщенно назвал его в своей вступительной лекции.
*Поляризованные пучки и мишени
Самым наглядным примером симбиоза моей и чужой физики является проблема поляризованных пучков и мишеней. Я работал над этой темой в близком сотрудничестве с моим «подчиненным», физиком-ядерщиком Жаком Тирьоном, а позже с ЦЕРН'ом. В чем там дело? Как я уже объяснял, в ядерной физике обстреливают мишень пучком частиц из ускорителя и изучают столкновение между частицей пучка и частицей мишени. Игроки в бильярд знают, что, если придать шару кием вращение (по-английски спин), это изменит результат столкновения с другим шаром. Большое число атомных ядер, в том числе протоны и дейтроны, имеют внутренний спин, что аналогично вращению бильярдного шара вокруг оси, и результат столкновения одной из этих частиц с мишенью будет зависеть от ориентации спина по отношению к направлению пучка. Обыкновенно пучки частиц не поляризованы, т. е. направления их спинов беспорядочны, и в столкновении пучка с мишенью наблюдается усреднение по всем ориентациям спинов. Из-за этого теряется информация. Желательно оперировать с поляризованными пучками, где все спины имеют одну и ту же определенную ориентацию.
В начале шестидесятых годов я придумал оригинальный метод получения поляризованных пучков, основанный на использовании радиочастотных полей с учетом моей старой знакомой — сверхтонкой структуры атома. Эта структура, обусловленная связью между ядерным магнитным моментом и гораздо большим электронным, действует как рукоятка, которой можно перевернуть ядерный момент посредством электронного. Это если не тот же метод, то, по крайней мере, та же идея, как ДЯП солид-эффектом, где электронная поляризация передается ядерным спинам. В результате нашего сотрудничества ребята Тирьона успешно построили источник для поляризованных пучков.
Но чтобы успешно употреблять наш поляризованный источник для ядерных реакций, его надо было сочетать с другим устройством — поляризованной мишенью. В бильярдном столкновении довольно легко придать кием шару спин (в английском смысле слова), но не ясно, как обеспечить тем же спином шар, в который метишь. (Правила бильярдной игры об этом умалчивают.) В нашей лаборатории мы называли эту вторую, более трудную часть проблемы «принцессой Маргарет», следуя анекдоту, рассказанному нашим другом Арни.
Принципом поляризованной мишени мы овладели несколько лет тому назад: это был «солид-эффект». Оставалось решить нелегкую техническую задачу построения мишени операционной, как говорят военные. Эта мишень пропускала протоны малой энергии (от 10 до 20 МэВ) и, значит, была очень тонкой (толщиной 0,1 мм), была окружена радиочастотной катушкой для измерения протонной поляризации, находилась внутри миллиметрового резонатора и была охлаждена до 1 K в криостате, введенном в зазор магнита, который создавал поле в 2 Тесла. Без помощи нашего одаренного инженера-криогенщика Пьера Рубо, бывшего морского офицера, и его искусного помощника Кустама не знаю, справились ли бы мы с этой задачей. Наконец, мы добились успеха, и в 1962 году физики Тирьона осуществили первый в мире эксперимент по рассеянию поляризованного протонного пучка на поляризованной протонной мишени, построенный по моему методу.
Желая найти клиентов для наших «товаров», я предлагал нашу технику нескольким французским ядерщикам. Все казались заинтересованными, но все придумывали какие-то сложные хитроумные эксперименты, которые было бы трудно осуществить даже с обыкновенной мишенью без осложнений, связанных с поляризацией. Их поведение напоминало мне следующий анекдот. Акробат ходит по натянутому канату на высоте в двадцать метров, на плечах у него сидит ребенок, а на голове зажженная керосиновая лампа; в руках у него скрипка, на которой он играет Крейцерову сонату (рояль надо полагать, остается внизу). Критически настроенный зритель замечает: «Да, это не Ойстрах».
От ядерной физики низких энергий мы перешли к мишеням для физики высоких энергий, где мы близко сотрудничали с физиками ЦЕРН'а. Трудности здесь были диаметрально противоположными. Вместо очень тонких мишеней и всех трудностей, связанных с этим, наши новые клиенты желали располагать как можно большими мишенями. Они готовы были «купить» мишень объемом до литра, т. е. в миллион раз большим, чем у нашего прежнего творенья. В некоторых отношениях это было даже легче при наличии надлежащей аппаратуры, электронной, криогенной, магнитной и механической, из которой немалую часть предоставил нам ЦЕРН. Зато усложнением являлась необходимость увеличить в мишени долю «свободных» протонов, т. е. не связанных в ядрах других элементов. Наконец, требовалось увеличение скорости роста поляризации и скорости ее переворачивания. Это привело к поискам подходящих парамагнитных примесей с очень быстрой релаксацией, позволяющей им успешно справляться с обязанностями «царя Соломона».
В то же время развивалась и теория динамической поляризации. Оказалось, что ширина линий ЭПР парамагнитных примесей была слишком велика для применения упрощенной модели солид-эффекта, и пришлось вырабатывать более утонченные теории. Пионерами этой теории, слишком сложной, чтобы ее здесь объяснять, явились советские физики Провоторов и Буишвили, а позже многие другие (в частности, и на Западе), в том числе мои сотрудники Соломон и Гольдман, да и я сам. Кроме того, есть еще и другие эффекты, о которых я только упоминаю, как, например, «узкое горло», фононное, хорошо знакомое в ЭПР релаксации, которое еще сильнее усложняет теорию. В обширной монографии, написанной с Гольдманом и вышедшей в 1982 году (есть русский перевод), мы дали подробное и, признаюсь, довольно неудобоваримое изложение теории ДЯП.*