Литмир - Электронная Библиотека
Содержание  
A
A

Возьмем в качестве примера бозон Хиггса. Создать его нелегко – как мы знаем, это можно сделать, только построив ускоритель частиц длиной в несколько десятков километров. Возможно, благодаря разным технологическим усовершенствованиям когда-нибудь ученые и создадут карманное устройство, способное достичь таких высоких энергий. Пока никто не имеет ни малейшего представления, как это сделать, но это во всяком случае не нарушило бы законы физики. Но даже если у вас в руках будет карманный – типа iPad – источник бозонов Хиггса, для чего его можно было бы использовать? Каждый произведенный бозон Хиггса распадается меньше чем за цептосекунду. Трудно себе представить какие-либо приложения этих бозонов, в которых не разумнее использовать какие-то другие – более стабильные – частицы.

Этот аргумент, конечно, легко опровергнуть. Мюоны – тоже нестабильные частицы, но им нашлись важные технологические применения: от катализа ядерного синтеза до поиска потайных камер в египетских пирамидах. Но все-таки время жизни мюона составляет около одной миллионной доли секунды – гораздо больше, чем у хиггсовского бозона. Нейтрино – стабильные, но слабо взаимодействующие частицы, и некоторые дальновидные люди думают, что их когда-нибудь будут использовать для коммуникаций. Если бы мы обладали богатым воображением, мы смогли бы сказать, что обнаружим частицы темной материи и найдем им похожее применение. Однако это не тот бизнес, в который я рекомендовал бы вкладывать много денег.

Сверхсветовые корабли и левитация

Поскольку бозон Хиггса отвечает за придание частицам массы, люди часто спрашивают: сможем ли мы заставить предметы стать легче или тяжелее, изучив его свойства? Или еще круче. На следующий день после оглашения открытия бозона 4 июля, канадский National Journal напечатал статью с броским заголовком: «Ученые говорят, что открытие бозона Хиггса сделает возможным движение кораблей со скоростью света». Никто из ученых, цитируемых в статье, не сказал ничего подобного, но очень вероятно, что какие-то ученые где-то когда-то и ляпнули такое.

Использование бозона Хиггса для того, чтобы сделать предметы легкими или даже невесомыми – идея абсолютно бессмысленная по нескольким причинам. Наиболее очевидная из них – то, что подавляющая часть массы обычных объектов определяется не бозоном Хиггса, а энергией сильных взаимодействий внутри протонов и нейтронов. Но что еще более важно, массу кваркам и заряженным лептонам на самом деле дает не сам бозон Хиггса, а поле Хиггса, скрывающееся в пустом пространстве. Желая, например, изменить массу электрона, вы должны были бы не шарахнуть по нему хиггсовским бозоном, а изменить значение фонового поля Хиггса.

Легче это сказать, чем сделать. Хотя мы и можем представить себе вероятность изменения поля Хиггса, у нас нет ни малейшего представления о том, как на самом деле это устроить. Кроме того, тут потребуется невообразимая энергия. Предположим, мы нашли способ уменьшить поле Хиггса внутри некоторого небольшого, но макроскопического объема пространства с его обычного значения (246 ГэВ) до нуля. При обычном значении поля Хиггса у него минимальная энергия, и заставить его принять нулевое значение – значит, увеличить энергию в нашем небольшом объеме. Из соотношения E = тc² следует, что этот объем теперь имеет и массу. Быстрый расчет показывает, что область размером с мяч для гольфа, внутри которого поле Хиггса обращено в ноль, будет иметь приблизительно массу Земли! Если бы мы хотели сделать это поле намного больше его обычного значения, небольшой объем сосредоточил бы в себе такую громадную массу, что он весь бы сжался и образовалась бы черная дыра.

Наконец, даже если нам каким-то образом удалось бы выключить поле Хиггса, скажем, внутри нашего тела, это не означало бы, что мы вдруг стали бы легче. Некоторые элементарные частицы станут легче – например, электроны и кварки – и нарушенная симметрия слабого взаимодействия могла бы восстановиться. Но в результате атомы и молекулы в вашем организме образуют совершенно другие конфигурации, скорее всего, просто все распадутся и испустят огромное количество энергии. Уменьшить поле Хиггса – это вам не сесть на диету: не похудеете, а взорветесь.

Так что в ближайшее время не стоит с нетерпением ждать появления устройств для левитации, управляемых с помощью поля Хиггса, однако вполне возможно, что новые открытия на БАКе заложат основу для таких будущих применений, которые мы сегодня не можем себе и представить…

«Побочные продукты»

Но иногда исследования в области физики элементарных частиц действительно приносят весьма ощутимую пользу. Эта польза обычно выражается не в виде непосредственного применения только что найденных новых частиц, а в виде побочных продуктов – новых технологий, разрабатываемых для усовершенствования самих экспериментальных установок.

Наиболее известным примером является Всемирная паутина. Тим Бернерс-Ли, работая в ЦЕРНе, изобрел Всемирную паутину, когда искал способы упростить обмен информацией между физиками элементарных частиц. Теперь наш мир просто нельзя представить без Интернета. Но никто никогда не предлагал финансировать ЦЕРН, потому что когда-нибудь в нем будет изобретен Интернет – это произошло, потому что много умных людей собрались вместе и создали мощную интеллектуальную среду. Перед ними стояли сложные технологические задачи, и результатов долго ждать не пришлось.

Есть много других подобных примеров. Потребность ускорителей частиц в уникальных мощных сверхпроводящих магнитах привела к важным достижениям в сверхпроводящих технологиях. Навыки в управлении частицами нашли применение в медицине и других областях науки, например, химии и биологии, а также стерилизации и тестировании пищевых продуктов. Развитие прочных и высокочувствительных детекторов, впервые изготовленных в экспериментах физики элементарных частиц, нашли применение в медицине, измерении уровня радиации и технике безопасности. Невероятно высокие требования к вычислительной мощности и скорости передачи информации привели к важным открытиям в области компьютерных технологий. Список можно продолжать еще долго, но отсюда следует ясный вывод: деньги, ушедшие на поиск частиц, смысл которых понятен лишь высоколобым ученым, потрачены не зря.

Точно оценить эффективность инвестиций в фундаментальные исследования очень трудно. Экономист Эдвин Мэнсфилд показал, что для общества в целом эти инвестиции в действительности весьма прибыльны. Мэнсфилд утверждает, что государственные расходы на фундаментальную науку дают в среднем прибыль 28 %, а такой доход каждый был бы рад получить от своего инвестиционного портфеля. Конечно, эти цифры в лучшем случае предоставляют информацию к размышлению, поскольку детали в значительной степени зависят от того, какие отрасли промышленности учитываются и что понимается под «фундаментальной наукой». Но они укрепляют парадоксальный на первый взгляд вывод: в фундаментальной науке исследования, которые никак не назовешь прикладными, приносят довольно впечатляющие дивиденды.

Но самый важный побочный эффект фундаментальных исследований вообще не связан с технологиями – это вдохновение, которым знание заражает людей всех возрастов. Кто знает, вдруг какой-то ребенок, услышав о бозоне Хиггса, заинтересуется наукой, начнет ее изучать, и в конечном итоге станет врачом или инженером мирового класса? Когда общество инвестирует небольшую часть своего богатства в то, чтобы задавать природе важные вопросы и отвечать на них, оно удовлетворяет неизбывное любопытство, присущее людям, ведь всем нам так хочется узнать, как устроена Вселенная, в которой мы живем!

Будущее физики элементарных частиц

Если не считать скупого конгрессмена – оппонента Вайнберга, – большинство людей готовы признать, что изучение законов природы – стоящий проект. Однако возникает разумный вопрос: сколько именно по-вашему он стоит? И в этом смысле судьба Сверхпроводящего суперколлайдера довлеет над всеми, кто думает о будущем физики элементарных частиц. Мы живем в эпоху, когда деньги жестко диктуют, какие проекты жизнеспособны, а какие – нет, и дорогие проекты должны оправдывать себя. БАК является потрясающим достижением, и мы надеемся, что он будет активно функционировать еще в течение многих лет, но в какой-то момент все, чему он может научить нас, мы узнаем. И что тогда?

69
{"b":"943292","o":1}